TradeSkillMaster/External/EmbeddedLibs/LibSerialize/LibSerialize.lua

1305 lines
49 KiB
Lua
Raw Normal View History

2020-11-13 14:13:12 -05:00
--[[
Copyright (c) 2020 Ross Nichols
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Credits:
The following projects served as inspiration for aspects of this project:
1. LibDeflate, by Haoqian He. https://github.com/SafeteeWoW/LibDeflate
For the CreateReader/CreateWriter functions.
2. lua-MessagePack, by François Perrad. https://framagit.org/fperrad/lua-MessagePack
For the mechanism for packing/unpacking floats and ints.
3. LibQuestieSerializer, by aero. https://github.com/AeroScripts/LibQuestieSerializer
For the basis of the implementation, and initial inspiration.
]]
-- Latest version can be found at https://github.com/rossnichols/LibSerialize.
--[[
# LibSerialize
LibSerialize is a Lua library for efficiently serializing/deserializing arbitrary values.
It supports serializing nils, numbers, booleans, strings, and tables containing these types.
It is best paired with [LibDeflate](https://github.com/safeteeWow/LibDeflate), to compress
the serialized output and optionally encode it for World of Warcraft addon or chat channels.
IMPORTANT: if you decide not to compress the output and plan on transmitting over an addon
channel, it still needs to be encoded, but encoding via `LibDeflate:EncodeForWoWAddonChannel()`
or `LibCompress:GetAddonEncodeTable()` will likely inflate the size of the serialization
by a considerable amount. See the usage below for an alternative.
Note that serialization and compression are sensitive to the specifics of your data set.
You should experiment with the available libraries (LibSerialize, AceSerializer, LibDeflate,
LibCompress, etc.) to determine which combination works best for you.
## Usage:
```lua
-- Dependencies: AceAddon-3.0, AceComm-3.0, LibSerialize, LibDeflate
MyAddon = LibStub("AceAddon-3.0"):NewAddon("MyAddon", "AceComm-3.0")
local LibSerialize = LibStub("LibSerialize")
local LibDeflate = LibStub("LibDeflate")
function MyAddon:OnEnable()
self:RegisterComm("MyPrefix")
end
-- With compression (recommended):
function MyAddon:Transmit(data)
local serialized = LibSerialize:Serialize(data)
local compressed = LibDeflate:CompressDeflate(serialized)
local encoded = LibDeflate:EncodeForWoWAddonChannel(compressed)
self:SendCommMessage("MyPrefix", encoded, "WHISPER", UnitName("player"))
end
function MyAddon:OnCommReceived(prefix, payload, distribution, sender)
local decoded = LibDeflate:DecodeForWoWAddonChannel(payload)
if not decoded then return end
local decompressed = LibDeflate:DecompressDeflate(decoded)
if not decompressed then return end
local success, data = LibSerialize:Deserialize(decompressed)
if not success then return end
-- Handle `data`
end
-- Without compression (custom codec):
MyAddon._codec = LibDeflate:CreateCodec("\000", "\255", "")
function MyAddon:Transmit(data)
local serialized = LibSerialize:Serialize(data)
local encoded = self._codec:Encode(serialized)
self:SendCommMessage("MyPrefix", encoded, "WHISPER", UnitName("player"))
end
function MyAddon:OnCommReceived(prefix, payload, distribution, sender)
local decoded = self._codec:Decode(payload)
if not decoded then return end
local success, data = LibSerialize:Deserialize(decoded)
if not success then return end
-- Handle `data`
end
```
## API:
* **`LibSerialize:SerializeEx(opts, ...)`**
Arguments:
* `opts`: options (see below)
* `...`: a variable number of serializable values
Returns:
* result: `...` serialized as a string
* **`LibSerialize:Serialize(...)`**
Arguments:
* `...`: a variable number of serializable values
Returns:
* `result`: `...` serialized as a string
Calls `SerializeEx(opts, ...)` with the default options (see below)
* **`LibSerialize:Deserialize(input)`**
Arguments:
* `input`: a string previously returned from `LibSerialize:Serialize()`
Returns:
* `success`: a boolean indicating if deserialization was successful
* `...`: the deserialized value(s), or a string containing the encountered Lua error
* **`LibSerialize:DeserializeValue(input)`**
Arguments:
* `input`: a string previously returned from `LibSerialize:Serialize()`
Returns:
* `...`: the deserialized value(s)
* **`LibSerialize:IsSerializableType(...)`**
Arguments:
* `...`: a variable number of values
Returns:
* `result`: true if all of the values' types are serializable.
Note that if you pass a table, it will be considered serializable
even if it contains unserializable keys or values. Only the types
of the arguments are checked.
`Serialize()` will raise a Lua error if the input cannot be serialized.
This will occur if any of the following exceed 16777215: any string length,
any table key count, number of unique strings, number of unique tables.
It will also occur by default if any unserializable types are encountered,
though that behavior may be disabled (see options).
`Deserialize()` and `DeserializeValue()` are equivalent, except the latter
returns the deserialization result directly and will not catch any Lua
errors that may occur when deserializing invalid input.
Note that none of the serialization/deseriazation methods support reentrancy,
and modifying tables during the serialization process is unspecified and
should be avoided. Table serialization is multi-phased and assumes a consistent
state for the key/value pairs across the phases.
## Options:
The following serialization options are supported:
* `errorOnUnserializableType`: `boolean` (default true)
* `true`: unserializable types will raise a Lua error
* `false`: unserializable types will be ignored. If it's a table key or value,
the key/value pair will be skipped. If it's one of the arguments to the
call to SerializeEx(), it will be replaced with `nil`.
* `stable`: `boolean` (default false)
* `true`: the resulting string will be stable, even if the input includes
maps. This option comes with an extra memory usage and CPU time cost.
* `false`: the resulting string will be unstable and will potentially differ
between invocations if the input includes maps
* `filter`: `function(t, k, v) => boolean` (default nil)
* If specified, the function will be called on every key/value pair in every
table encountered during serialization. The function must return true for
the pair to be serialized. It may be called multiple times on a table for
the same key/value pair. See notes on reeentrancy and table modification.
If an option is unspecified in the table, then its default will be used.
This means that if an option `foo` defaults to true, then:
* `myOpts.foo = false`: option `foo` is false
* `myOpts.foo = nil`: option `foo` is true
## Customizing table serialization:
For any serialized table, LibSerialize will check for the presence of a
metatable key `__LibSerialize`. It will be interpreted as a table with
the following possible keys:
* `filter`: `function(t, k, v) => boolean`
* If specified, the function will be called on every key/value pair in that
table. The function must return true for the pair to be serialized. It may
be called multiple times on a table for the same key/value pair. See notes
on reeentrancy and table modification. If combined with the `filter` option,
both functions must return true.
## Examples:
1. `LibSerialize:Serialize()` supports variadic arguments and arbitrary key types,
maintaining a consistent internal table identity.
```lua
local t = { "test", [false] = {} }
t[ t[false] ] = "hello"
local serialized = LibSerialize:Serialize(t, "extra")
local success, tab, str = LibSerialize:Deserialize(serialized)
assert(success)
assert(tab[1] == "test")
assert(tab[ tab[false] ] == "hello")
assert(str == "extra")
```
2. Normally, unserializable types raise an error when encountered during serialization,
but that behavior can be disabled in order to silently ignore them instead.
```lua
local serialized = LibSerialize:SerializeEx(
{ errorOnUnserializableType = false },
print, { a = 1, b = print })
local success, fn, tab = LibSerialize:Deserialize(serialized)
assert(success)
assert(fn == nil)
assert(tab.a == 1)
assert(tab.b == nil)
```
3. Tables may reference themselves recursively and will still be serialized properly.
```lua
local t = { a = 1 }
t.t = t
t[t] = "test"
local serialized = LibSerialize:Serialize(t)
local success, tab = LibSerialize:Deserialize(serialized)
assert(success)
assert(tab.t.t.t.t.t.t.a == 1)
assert(tab[tab.t] == "test")
```
4. You may specify a global filter that applies to all tables encountered during
serialization, and to individual tables via their metatable.
```lua
local t = { a = 1, b = print, c = 3 }
local nested = { a = 1, b = print, c = 3 }
t.nested = nested
setmetatable(nested, { __LibSerialize = {
filter = function(t, k, v) return k ~= "c" end
}})
local opts = {
filter = function(t, k, v) return LibSerialize:IsSerializableType(k, v) end
}
local serialized = LibSerialize:SerializeEx(opts, t)
local success, tab = LibSerialize:Deserialize(serialized)
assert(success)
assert(tab.a == 1)
assert(tab.b == nil)
assert(tab.c == 3)
assert(tab.nested.a == 1)
assert(tab.nested.b == nil)
assert(tab.nested.c == nil)
```
## Encoding format:
Every object is encoded as a type byte followed by type-dependent payload.
For numbers, the payload is the number itself, using a number of bytes
appropriate for the number. Small numbers can be embedded directly into
the type byte, optionally with an additional byte following for more
possible values. Negative numbers are encoded as their absolute value,
with the type byte indicating that it is negative. Floats are decomposed
into their eight bytes, unless serializing as a string is shorter.
For strings and tables, the length/count is also encoded so that the
payload doesn't need a special terminator. Small counts can be embedded
directly into the type byte, whereas larger counts are encoded directly
following the type byte, before the payload.
Strings are stored directly, with no transformations. Tables are stored
in one of three ways, depending on their layout:
* Array-like: all keys are numbers starting from 1 and increasing by 1.
Only the table's values are encoded.
* Map-like: the table has no array-like keys.
The table is encoded as key-value pairs.
* Mixed: the table has both map-like and array-like keys.
The table is encoded first with the values of the array-like keys,
followed by key-value pairs for the map-like keys. For this version,
two counts are encoded, one each for the two different portions.
Strings and tables are also tracked as they are encountered, to detect reuse.
If a string or table is reused, it is encoded instead as an index into the
tracking table for that type. Strings must be >2 bytes in length to be tracked.
Tables may reference themselves recursively.
#### Type byte:
The type byte uses the following formats to implement the above:
* `NNNN NNN1`: a 7 bit non-negative int
* `CCCC TT10`: a 2 bit type index and 4 bit count (strlen, #tab, etc.)
* Followed by the type-dependent payload
* `NNNN S100`: the lower four bits of a 12 bit int and 1 bit for its sign
* Followed by a byte for the upper bits
* `TTTT T000`: a 5 bit type index
* Followed by the type-dependent payload, including count(s) if needed
--]]
local MAJOR, MINOR = "LibSerialize", 1
local LibSerialize
if LibStub then
LibSerialize = LibStub:NewLibrary(MAJOR, MINOR)
if not LibSerialize then return end -- This version is already loaded.
else
LibSerialize = {}
end
local assert = assert
local error = error
local pcall = pcall
local print = print
local getmetatable = getmetatable
local pairs = pairs
local ipairs = ipairs
local select = select
local unpack = unpack
local type = type
local tostring = tostring
local tonumber = tonumber
local max = math.max
local frexp = math.frexp
local ldexp = math.ldexp
local floor = math.floor
local math_modf = math.modf
local math_huge = math.huge
local string_byte = string.byte
local string_char = string.char
local string_sub = string.sub
local table_concat = table.concat
local table_insert = table.insert
local table_sort = table.sort
local defaultOptions = {
errorOnUnserializableType = true,
stable = false
}
local canSerializeFnOptions = {
errorOnUnserializableType = false
}
--[[---------------------------------------------------------------------------
Helper functions.
--]]---------------------------------------------------------------------------
-- Returns the number of bytes required to store the value,
-- up to a maximum of three. Errors if three bytes is insufficient.
local function GetRequiredBytes(value)
if value < 256 then return 1 end
if value < 65536 then return 2 end
if value < 16777216 then return 3 end
error("Object limit exceeded")
end
-- Returns the number of bytes required to store the value,
-- though always returning seven if four bytes is insufficient.
-- Doubles have room for 53bit numbers, so seven bits max.
local function GetRequiredBytesNumber(value)
if value < 256 then return 1 end
if value < 65536 then return 2 end
if value < 16777216 then return 3 end
if value < 4294967296 then return 4 end
return 7
end
-- Returns whether the value (a number) is fractional,
-- as opposed to a whole number.
local function IsFractional(value)
local _, fract = math_modf(value)
return fract ~= 0
end
-- Sort compare function which is used to sort table keys to ensure that the
-- serialization of maps is stable. We arbitrarily put strings first, then
-- numbers, and finally booleans.
local function StableKeySort(a, b)
local aType = type(a)
local bType = type(b)
-- Put strings first
if aType == "string" and bType == "string" then
return a < b
elseif aType == "string" then
return true
elseif bType == "string" then
return false
end
-- Put numbers next
if aType == "number" and bType == "number" then
return a < b
elseif aType == "number" then
return true
elseif bType == "number" then
return false
end
-- Put booleans last
if aType == "boolean" and bType == "boolean" then
return (a and 1 or 0) < (b and 1 or 0)
else
error(("Unhandled sort type(s): %s, %s"):format(aType, bType))
end
end
-- Prints args to the chat window. To enable debug statements,
-- do a find/replace in this file with "-- DebugPrint(" for "DebugPrint(",
-- or the reverse to disable them again.
local DebugPrint = function(...)
print(...)
-- ABGP:WriteLogged("SERIALIZE", table_concat({tostringall(...)}, " "))
end
--[[---------------------------------------------------------------------------
Helpers for reading/writing streams of bytes from/to a string
--]]---------------------------------------------------------------------------
-- Creates a writer to lazily construct a string over multiple writes.
-- Return values:
-- 1. WriteString(str)
-- 2. Flush()
local function CreateWriter()
local bufferSize = 0
local buffer = {}
-- Write the entire string into the writer.
local function WriteString(str)
-- DebugPrint("Writing string:", str, #str)
bufferSize = bufferSize + 1
buffer[bufferSize] = str
end
-- Return a string built from the previous calls to WriteString.
local function FlushWriter()
local flushed = table_concat(buffer, "", 1, bufferSize)
bufferSize = 0
return flushed
end
return WriteString, FlushWriter
end
-- Creates a reader to sequentially read bytes from the input string.
-- Return values:
-- 1. ReadBytes(bytelen)
-- 2. ReaderBytesLeft()
local function CreateReader(input)
local inputLen = #input
local nextPos = 1
-- Read some bytes from the reader.
-- @param bytelen The number of bytes to be read.
-- @return the bytes as a string
local function ReadBytes(bytelen)
local result = string_sub(input, nextPos, nextPos + bytelen - 1)
nextPos = nextPos + bytelen
return result
end
local function ReaderBytesLeft()
return inputLen - nextPos + 1
end
return ReadBytes, ReaderBytesLeft
end
--[[---------------------------------------------------------------------------
Helpers for serializing/deserializing numbers (ints and floats)
--]]---------------------------------------------------------------------------
local function FloatToString(n)
local sign = 0
if n < 0.0 then
sign = 0x80
n = -n
end
local mant, expo = frexp(n)
if mant ~= mant then -- nan
return string_char(0xFF, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
elseif mant == math_huge or expo > 0x400 then
if sign == 0 then -- inf
return string_char(0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
else -- -inf
return string_char(0xFF, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
end
elseif (mant == 0.0 and expo == 0) or expo < -0x3FE then -- zero
return string_char(sign, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
else
expo = expo + 0x3FE
mant = floor((mant * 2.0 - 1.0) * ldexp(0.5, 53))
return string_char(sign + floor(expo / 0x10),
(expo % 0x10) * 0x10 + floor(mant / 281474976710656),
floor(mant / 1099511627776) % 256,
floor(mant / 4294967296) % 256,
floor(mant / 16777216) % 256,
floor(mant / 65536) % 256,
floor(mant / 256) % 256,
mant % 256)
end
end
local function StringToFloat(str)
local b1, b2, b3, b4, b5, b6, b7, b8 = string_byte(str, 1, 8)
local sign = b1 > 0x7F
local expo = (b1 % 0x80) * 0x10 + floor(b2 / 0x10)
local mant = ((((((b2 % 0x10) * 256 + b3) * 256 + b4) * 256 + b5) * 256 + b6) * 256 + b7) * 256 + b8
if sign then
sign = -1
else
sign = 1
end
local n
if mant == 0 and expo == 0 then
n = sign * 0.0
elseif expo == 0x7FF then
if mant == 0 then
n = sign * math_huge
else
n = 0.0/0.0
end
else
n = sign * ldexp(1.0 + mant / 4503599627370496.0, expo - 0x3FF)
end
return n
end
local function IntToString(n, required)
if required == 1 then
return string_char(n)
elseif required == 2 then
return string_char(floor(n / 256),
n % 256)
elseif required == 3 then
return string_char(floor(n / 65536),
floor(n / 256) % 256,
n % 256)
elseif required == 4 then
return string_char(floor(n / 16777216),
floor(n / 65536) % 256,
floor(n / 256) % 256,
n % 256)
elseif required == 7 then
return string_char(floor(n / 281474976710656) % 256,
floor(n / 1099511627776) % 256,
floor(n / 4294967296) % 256,
floor(n / 16777216) % 256,
floor(n / 65536) % 256,
floor(n / 256) % 256,
n % 256)
end
error("Invalid required bytes: " .. required)
end
local function StringToInt(str, required)
if required == 1 then
return string_byte(str)
elseif required == 2 then
local b1, b2 = string_byte(str, 1, 2)
return b1 * 256 + b2
elseif required == 3 then
local b1, b2, b3 = string_byte(str, 1, 3)
return (b1 * 256 + b2) * 256 + b3
elseif required == 4 then
local b1, b2, b3, b4 = string_byte(str, 1, 4)
return ((b1 * 256 + b2) * 256 + b3) * 256 + b4
elseif required == 7 then
local b1, b2, b3, b4, b5, b6, b7, b8 = 0, string_byte(str, 1, 7)
return ((((((b1 * 256 + b2) * 256 + b3) * 256 + b4) * 256 + b5) * 256 + b6) * 256 + b7) * 256 + b8
end
error("Invalid required bytes: " .. required)
end
--[[---------------------------------------------------------------------------
Object reuse:
As strings/tables are serialized or deserialized, they are stored in this lookup
table in case they're encountered again, at which point they can be referenced
by their index into this table rather than repeating the string contents.
--]]---------------------------------------------------------------------------
local refsDirty = false
local stringRefs = {}
local tableRefs = {}
function LibSerialize:_AddReference(refs, value)
refsDirty = true
local ref = #refs + 1
refs[ref] = value
refs[value] = ref
end
function LibSerialize:_ClearReferences()
if refsDirty then
stringRefs = {}
tableRefs = {}
end
end
--[[---------------------------------------------------------------------------
Read (deserialization) support.
--]]---------------------------------------------------------------------------
function LibSerialize:_ReadObject()
local value = self:_ReadByte()
if value % 2 == 1 then
-- Number embedded in the top 7 bits.
local num = (value - 1) / 2
-- DebugPrint("Found embedded number (1byte):", value, num)
return num
end
if value % 4 == 2 then
-- Type with embedded count. Extract both.
-- The type is in bits 3-4, count in 5-8.
local typ = (value - 2) / 4
local count = (typ - typ % 4) / 4
typ = typ % 4
-- DebugPrint("Found type with embedded count:", value, typ, count)
return self._EmbeddedReaderTable[typ](self, count)
end
if value % 8 == 4 then
-- Number embedded in the top 4 bits, plus an additional byte's worth (so 12 bits).
-- If bit 4 is set, the number is negative.
local packed = self:_ReadByte() * 256 + value
local num
if value % 16 == 12 then
num = -(packed - 12) / 16
else
num = (packed - 4) / 16
end
-- DebugPrint("Found embedded number (2bytes):", value, packed, num)
return num
end
-- Otherwise, the type index is embedded in the upper 5 bits.
local typ = value / 8
-- DebugPrint("Found type:", value, typ)
return self._ReaderTable[typ](self)
end
function LibSerialize:_ReadTable(entryCount, value)
-- DebugPrint("Extracting keys/values for table:", entryCount)
if value == nil then
value = {}
self:_AddReference(tableRefs, value)
end
for _ = 1, entryCount do
local k, v = self:_ReadPair(self._ReadObject)
value[k] = v
end
return value
end
function LibSerialize:_ReadArray(entryCount, value)
-- DebugPrint("Extracting values for array:", entryCount)
if value == nil then
value = {}
self:_AddReference(tableRefs, value)
end
for i = 1, entryCount do
value[i] = self:_ReadObject()
end
return value
end
function LibSerialize:_ReadMixed(arrayCount, mapCount)
-- DebugPrint("Extracting values for mixed table:", arrayCount, mapCount)
local value = {}
self:_AddReference(tableRefs, value)
self:_ReadArray(arrayCount, value)
self:_ReadTable(mapCount, value)
return value
end
function LibSerialize:_ReadString(len)
-- DebugPrint("Reading string,", len)
local value = self._readBytes(len)
if len > 2 then
self:_AddReference(stringRefs, value)
end
return value
end
function LibSerialize:_ReadByte()
-- DebugPrint("Reading byte")
return self:_ReadInt(1)
end
function LibSerialize:_ReadInt(required)
-- DebugPrint("Reading int", required)
return StringToInt(self._readBytes(required), required)
end
function LibSerialize:_ReadPair(fn, ...)
local first = fn(self, ...)
local second = fn(self, ...)
return first, second
end
local embeddedIndexShift = 4
local embeddedCountShift = 16
LibSerialize._EmbeddedIndex = {
STRING = 0,
TABLE = 1,
ARRAY = 2,
MIXED = 3,
}
LibSerialize._EmbeddedReaderTable = {
[LibSerialize._EmbeddedIndex.STRING] = function(self, c) return self:_ReadString(c) end,
[LibSerialize._EmbeddedIndex.TABLE] = function(self, c) return self:_ReadTable(c) end,
[LibSerialize._EmbeddedIndex.ARRAY] = function(self, c) return self:_ReadArray(c) end,
-- For MIXED, the 4-bit count contains two 2-bit counts that are one less than the true count.
[LibSerialize._EmbeddedIndex.MIXED] = function(self, c) return self:_ReadMixed((c % 4) + 1, floor(c / 4) + 1) end,
}
local readerIndexShift = 8
LibSerialize._ReaderIndex = {
NIL = 0,
NUM_16_POS = 1,
NUM_16_NEG = 2,
NUM_24_POS = 3,
NUM_24_NEG = 4,
NUM_32_POS = 5,
NUM_32_NEG = 6,
NUM_64_POS = 7,
NUM_64_NEG = 8,
NUM_FLOAT = 9,
NUM_FLOATSTR_POS = 10,
NUM_FLOATSTR_NEG = 11,
BOOL_T = 12,
BOOL_F = 13,
STR_8 = 14,
STR_16 = 15,
STR_24 = 16,
TABLE_8 = 17,
TABLE_16 = 18,
TABLE_24 = 19,
ARRAY_8 = 20,
ARRAY_16 = 21,
ARRAY_24 = 22,
MIXED_8 = 23,
MIXED_16 = 24,
MIXED_24 = 25,
STRINGREF_8 = 26,
STRINGREF_16 = 27,
STRINGREF_24 = 28,
TABLEREF_8 = 29,
TABLEREF_16 = 30,
TABLEREF_24 = 31,
}
LibSerialize._ReaderTable = {
-- Nil
[LibSerialize._ReaderIndex.NIL] = function(self) return nil end,
-- Numbers (ones requiring <=12 bits are handled separately)
[LibSerialize._ReaderIndex.NUM_16_POS] = function(self) return self:_ReadInt(2) end,
[LibSerialize._ReaderIndex.NUM_16_NEG] = function(self) return -self:_ReadInt(2) end,
[LibSerialize._ReaderIndex.NUM_24_POS] = function(self) return self:_ReadInt(3) end,
[LibSerialize._ReaderIndex.NUM_24_NEG] = function(self) return -self:_ReadInt(3) end,
[LibSerialize._ReaderIndex.NUM_32_POS] = function(self) return self:_ReadInt(4) end,
[LibSerialize._ReaderIndex.NUM_32_NEG] = function(self) return -self:_ReadInt(4) end,
[LibSerialize._ReaderIndex.NUM_64_POS] = function(self) return self:_ReadInt(7) end,
[LibSerialize._ReaderIndex.NUM_64_NEG] = function(self) return -self:_ReadInt(7) end,
[LibSerialize._ReaderIndex.NUM_FLOAT] = function(self) return StringToFloat(self._readBytes(8)) end,
[LibSerialize._ReaderIndex.NUM_FLOATSTR_POS] = function(self) return tonumber(self._readBytes(self:_ReadByte())) end,
[LibSerialize._ReaderIndex.NUM_FLOATSTR_NEG] = function(self) return -tonumber(self._readBytes(self:_ReadByte())) end,
-- Booleans
[LibSerialize._ReaderIndex.BOOL_T] = function(self) return true end,
[LibSerialize._ReaderIndex.BOOL_F] = function(self) return false end,
-- Strings (encoded as size + buffer)
[LibSerialize._ReaderIndex.STR_8] = function(self) return self:_ReadString(self:_ReadByte()) end,
[LibSerialize._ReaderIndex.STR_16] = function(self) return self:_ReadString(self:_ReadInt(2)) end,
[LibSerialize._ReaderIndex.STR_24] = function(self) return self:_ReadString(self:_ReadInt(3)) end,
-- Tables (encoded as count + key/value pairs)
[LibSerialize._ReaderIndex.TABLE_8] = function(self) return self:_ReadTable(self:_ReadByte()) end,
[LibSerialize._ReaderIndex.TABLE_16] = function(self) return self:_ReadTable(self:_ReadInt(2)) end,
[LibSerialize._ReaderIndex.TABLE_24] = function(self) return self:_ReadTable(self:_ReadInt(3)) end,
-- Arrays (encoded as count + values)
[LibSerialize._ReaderIndex.ARRAY_8] = function(self) return self:_ReadArray(self:_ReadByte()) end,
[LibSerialize._ReaderIndex.ARRAY_16] = function(self) return self:_ReadArray(self:_ReadInt(2)) end,
[LibSerialize._ReaderIndex.ARRAY_24] = function(self) return self:_ReadArray(self:_ReadInt(3)) end,
-- Mixed arrays/maps (encoded as arrayCount + mapCount + arrayValues + key/value pairs)
[LibSerialize._ReaderIndex.MIXED_8] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadByte)) end,
[LibSerialize._ReaderIndex.MIXED_16] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadInt, 2)) end,
[LibSerialize._ReaderIndex.MIXED_24] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadInt, 3)) end,
-- Previously referenced strings
[LibSerialize._ReaderIndex.STRINGREF_8] = function(self) return stringRefs[self:_ReadByte()] end,
[LibSerialize._ReaderIndex.STRINGREF_16] = function(self) return stringRefs[self:_ReadInt(2)] end,
[LibSerialize._ReaderIndex.STRINGREF_24] = function(self) return stringRefs[self:_ReadInt(3)] end,
-- Previously referenced tables
[LibSerialize._ReaderIndex.TABLEREF_8] = function(self) return tableRefs[self:_ReadByte()] end,
[LibSerialize._ReaderIndex.TABLEREF_16] = function(self) return tableRefs[self:_ReadInt(2)] end,
[LibSerialize._ReaderIndex.TABLEREF_24] = function(self) return tableRefs[self:_ReadInt(3)] end,
}
--[[---------------------------------------------------------------------------
Write (serialization) support.
--]]---------------------------------------------------------------------------
-- Returns the appropriate function from the writer table for the object's type.
-- If the object's type isn't supported and opts.errorOnUnserializableType is true,
-- then an error will be raised.
function LibSerialize:_GetWriteFn(obj, opts)
local typ = type(obj)
local writeFn = self._WriterTable[typ]
if not writeFn and opts.errorOnUnserializableType then
error(("Unhandled type: %s"):format(typ))
end
return writeFn
end
-- Returns true if all of the variadic arguments are serializable.
-- Note that _GetWriteFn will raise a Lua error if it finds an
-- unserializable type, unless this behavior is suppressed via options.
function LibSerialize:_CanSerialize(opts, ...)
for i = 1, select("#", ...) do
local obj = select(i, ...)
local writeFn = self:_GetWriteFn(obj, opts)
if not writeFn then
return false
end
end
return true
end
-- Returns true if the table's key/value pair should be serialized.
-- Both filter functions (if present) must return true, and the
-- key/value types must be serializable. Note that _CanSerialize
-- will raise a Lua error if it finds an unserializable type, unless
-- this behavior is suppressed via options.
function LibSerialize:_ShouldSerialize(t, k, v, opts, filterFn)
return (not opts.filter or opts.filter(t, k, v)) and
(not filterFn or filterFn(t, k, v)) and
self:_CanSerialize(opts, k, v)
end
-- Note that _GetWriteFn will raise a Lua error if it finds an
-- unserializable type, unless this behavior is suppressed via options.
function LibSerialize:_WriteObject(obj, opts)
local writeFn = self:_GetWriteFn(obj, opts)
if not writeFn then
return false
end
writeFn(self, obj, opts)
return true
end
function LibSerialize:_WriteByte(value)
self:_WriteInt(value, 1)
end
function LibSerialize:_WriteInt(n, threshold)
self._writeString(IntToString(n, threshold))
end
-- Lookup tables to map the number of required bytes to the
-- appropriate reader table index.
local numberIndices = {
[2] = LibSerialize._ReaderIndex.NUM_16_POS,
[3] = LibSerialize._ReaderIndex.NUM_24_POS,
[4] = LibSerialize._ReaderIndex.NUM_32_POS,
[7] = LibSerialize._ReaderIndex.NUM_64_POS,
}
local stringIndices = {
[1] = LibSerialize._ReaderIndex.STR_8,
[2] = LibSerialize._ReaderIndex.STR_16,
[3] = LibSerialize._ReaderIndex.STR_24,
}
local tableIndices = {
[1] = LibSerialize._ReaderIndex.TABLE_8,
[2] = LibSerialize._ReaderIndex.TABLE_16,
[3] = LibSerialize._ReaderIndex.TABLE_24,
}
local arrayIndices = {
[1] = LibSerialize._ReaderIndex.ARRAY_8,
[2] = LibSerialize._ReaderIndex.ARRAY_16,
[3] = LibSerialize._ReaderIndex.ARRAY_24,
}
local mixedIndices = {
[1] = LibSerialize._ReaderIndex.MIXED_8,
[2] = LibSerialize._ReaderIndex.MIXED_16,
[3] = LibSerialize._ReaderIndex.MIXED_24,
}
local stringRefIndices = {
[1] = LibSerialize._ReaderIndex.STRINGREF_8,
[2] = LibSerialize._ReaderIndex.STRINGREF_16,
[3] = LibSerialize._ReaderIndex.STRINGREF_24,
}
local tableRefIndices = {
[1] = LibSerialize._ReaderIndex.TABLEREF_8,
[2] = LibSerialize._ReaderIndex.TABLEREF_16,
[3] = LibSerialize._ReaderIndex.TABLEREF_24,
}
LibSerialize._WriterTable = {
["nil"] = function(self)
-- DebugPrint("Serializing nil")
self:_WriteByte(readerIndexShift * self._ReaderIndex.NIL)
end,
["number"] = function(self, num)
if IsFractional(num) then
-- DebugPrint("Serializing float:", num)
-- Normally a float takes 8 bytes. See if it's cheaper to encode as a string.
-- If we encode as a string, though, we'll need a byte for its length.
local sign = 0
local numAbs = num
if num < 0 then
sign = readerIndexShift
numAbs = -num
end
local asString = tostring(numAbs)
if #asString < 7 and tonumber(asString) == numAbs then
self:_WriteByte(sign + readerIndexShift * self._ReaderIndex.NUM_FLOATSTR_POS)
self:_WriteByte(#asString, 1)
self._writeString(asString)
else
self:_WriteByte(readerIndexShift * self._ReaderIndex.NUM_FLOAT)
self._writeString(FloatToString(num))
end
elseif num > -4096 and num < 4096 then
-- The type byte supports two modes by which a number can be embedded:
-- A 1-byte mode for 7-bit numbers, and a 2-byte mode for 12-bit numbers.
if num >= 0 and num < 128 then
-- DebugPrint("Serializing embedded number (1byte):", num)
self:_WriteByte(num * 2 + 1)
else
-- DebugPrint("Serializing embedded number (2bytes):", num)
local sign = 0
if num < 0 then
sign = 8
num = -num
end
num = num * 16 + sign + 4
local upper, lower = floor(num / 256), num % 256
self:_WriteByte(lower)
self:_WriteByte(upper)
end
else
-- DebugPrint("Serializing number:", num)
local sign = 0
if num < 0 then
num = -num
sign = readerIndexShift
end
local required = GetRequiredBytesNumber(num)
self:_WriteByte(sign + readerIndexShift * numberIndices[required])
self:_WriteInt(num, required)
end
end,
["boolean"] = function(self, bool)
-- DebugPrint("Serializing bool:", bool)
self:_WriteByte(readerIndexShift * (bool and self._ReaderIndex.BOOL_T or self._ReaderIndex.BOOL_F))
end,
["string"] = function(self, str)
local ref = stringRefs[str]
if ref then
-- DebugPrint("Serializing string ref:", str)
local required = GetRequiredBytes(ref)
self:_WriteByte(readerIndexShift * stringRefIndices[required])
self:_WriteInt(stringRefs[str], required)
else
local len = #str
if len < 16 then
-- Short lengths can be embedded directly into the type byte.
-- DebugPrint("Serializing string, embedded count:", str, len)
self:_WriteByte(embeddedCountShift * len + embeddedIndexShift * self._EmbeddedIndex.STRING + 2)
else
-- DebugPrint("Serializing string:", str, len)
local required = GetRequiredBytes(len)
self:_WriteByte(readerIndexShift * stringIndices[required])
self:_WriteInt(len, required)
end
self._writeString(str)
if len > 2 then
self:_AddReference(stringRefs, str)
end
end
end,
["table"] = function(self, tab, opts)
local ref = tableRefs[tab]
if ref then
-- DebugPrint("Serializing table ref:", tab)
local required = GetRequiredBytes(ref)
self:_WriteByte(readerIndexShift * tableRefIndices[required])
self:_WriteInt(tableRefs[tab], required)
else
-- Add a reference before trying to serialize the table's contents,
-- so that if the table recursively references itself, we can still
-- properly serialize it.
self:_AddReference(tableRefs, tab)
local filter
local mt = getmetatable(tab)
if mt and type(mt) == "table" and mt.__LibSerialize then
filter = mt.__LibSerialize.filter
end
-- First determine the "proper" length of the array portion of the table,
-- which terminates at its first nil value. Note that some values in this
-- range may not be serializable, which is fine - we'll handle them later.
-- It's better to maximize the number of values that can be serialized
-- without needing to also serialize their keys.
local arrayCount, serializableArrayCount = 0, 0
local entireArraySerializable = true
local totalArraySerializable = 0
for i, v in ipairs(tab) do
arrayCount = i
if self:_ShouldSerialize(tab, i, v, opts, filter) then
totalArraySerializable = totalArraySerializable + 1
if entireArraySerializable then
serializableArrayCount = i
end
else
entireArraySerializable = false
end
end
-- Consider the array portion as a series of zero or more serializable
-- entries followed by zero or more entries that may or may not be
-- serializable. For the latter portion, we can either write them in
-- the array portion, padding the unserializable entries with nils,
-- or just write them as key/value pairs in the map portion. We'll choose
-- the former if there are more serializable entries in this portion than
-- unserializable, or the latter if more are unserializable.
if arrayCount - totalArraySerializable > totalArraySerializable - serializableArrayCount then
arrayCount = serializableArrayCount
entireArraySerializable = true
end
-- Next determine the count of all entries in the table whose keys are not
-- included in the array portion, only counting keys that are serializable.
local mapCount = 0
local entireMapSerializable = true
for k, v in pairs(tab) do
local isArrayKey = type(k) == "number" and k >= 1 and k <= arrayCount and not IsFractional(k)
if not isArrayKey then
if self:_ShouldSerialize(tab, k, v, opts, filter) then
mapCount = mapCount + 1
else
entireMapSerializable = false
end
end
end
if mapCount == 0 then
-- The table is an array. We can avoid writing the keys.
if arrayCount < 16 then
-- Short counts can be embedded directly into the type byte.
-- DebugPrint("Serializing array, embedded count:", arrayCount)
self:_WriteByte(embeddedCountShift * arrayCount + embeddedIndexShift * self._EmbeddedIndex.ARRAY + 2)
else
-- DebugPrint("Serializing array:", arrayCount)
local required = GetRequiredBytes(arrayCount)
self:_WriteByte(readerIndexShift * arrayIndices[required])
self:_WriteInt(arrayCount, required)
end
for i = 1, arrayCount do
local v = tab[i]
if entireArraySerializable or self:_ShouldSerialize(tab, i, v, opts, filter) then
self:_WriteObject(v, opts)
else
-- Since the keys are being omitted, write a `nil` entry
-- for any values that shouldn't be serialized.
self:_WriteObject(nil, opts)
end
end
elseif arrayCount ~= 0 then
-- The table has both array and dictionary keys. We can still save space
-- by writing the array values first without keys.
if mapCount < 5 and arrayCount < 5 then
-- Short counts can be embedded directly into the type byte.
-- They have to be really short though, since we have two counts.
-- Since neither can be zero (this is a mixed table),
-- we can get away with not being able to represent 0.
-- DebugPrint("Serializing mixed array-table, embedded counts:", arrayCount, mapCount)
local combined = (mapCount - 1) * 4 + arrayCount - 1
self:_WriteByte(embeddedCountShift * combined + embeddedIndexShift * self._EmbeddedIndex.MIXED + 2)
else
-- Use the max required bytes for the two counts.
-- DebugPrint("Serializing mixed array-table:", arrayCount, mapCount)
local required = max(GetRequiredBytes(mapCount), GetRequiredBytes(arrayCount))
self:_WriteByte(readerIndexShift * mixedIndices[required])
self:_WriteInt(arrayCount, required)
self:_WriteInt(mapCount, required)
end
for i = 1, arrayCount do
local v = tab[i]
if entireArraySerializable or self:_ShouldSerialize(tab, i, v, opts, filter) then
self:_WriteObject(v, opts)
else
-- Since the keys are being omitted, write a `nil` entry
-- for any values that shouldn't be serialized.
self:_WriteObject(nil, opts)
end
end
local mapCountWritten = 0
if opts.stable then
-- In order to ensure that the output is stable, we sort the map keys and write
-- them in the sorted order.
local mapKeys = {}
for k, v in pairs(tab) do
-- Exclude keys that have already been written via the previous loop.
local isArrayKey = type(k) == "number" and k >= 1 and k <= arrayCount and not IsFractional(k)
if not isArrayKey and (entireMapSerializable or self:_ShouldSerialize(tab, k, v, opts, filter)) then
table_insert(mapKeys, k)
end
end
table_sort(mapKeys, StableKeySort)
for _, k in ipairs(mapKeys) do
self:_WriteObject(k, opts)
self:_WriteObject(tab[k], opts)
mapCountWritten = mapCountWritten + 1
end
else
for k, v in pairs(tab) do
-- Exclude keys that have already been written via the previous loop.
local isArrayKey = type(k) == "number" and k >= 1 and k <= arrayCount and not IsFractional(k)
if not isArrayKey and (entireMapSerializable or self:_ShouldSerialize(tab, k, v, opts, filter)) then
self:_WriteObject(k, opts)
self:_WriteObject(v, opts)
mapCountWritten = mapCountWritten + 1
end
end
end
assert(mapCount == mapCountWritten)
else
-- The table has only dictionary keys, so we'll write them all.
if mapCount < 16 then
-- Short counts can be embedded directly into the type byte.
-- DebugPrint("Serializing table, embedded count:", mapCount)
self:_WriteByte(embeddedCountShift * mapCount + embeddedIndexShift * self._EmbeddedIndex.TABLE + 2)
else
-- DebugPrint("Serializing table:", mapCount)
local required = GetRequiredBytes(mapCount)
self:_WriteByte(readerIndexShift * tableIndices[required])
self:_WriteInt(mapCount, required)
end
if opts.stable then
-- In order to ensure that the output is stable, we sort the map keys and write
-- them in the sorted order.
local mapKeys = {}
for k, v in pairs(tab) do
if entireMapSerializable or self:_ShouldSerialize(tab, k, v, opts, filter) then
table_insert(mapKeys, k)
end
end
table_sort(mapKeys, StableKeySort)
for _, k in ipairs(mapKeys) do
self:_WriteObject(k, opts)
self:_WriteObject(tab[k], opts)
end
else
for k, v in pairs(tab) do
if entireMapSerializable or self:_ShouldSerialize(tab, k, v, opts, filter) then
self:_WriteObject(k, opts)
self:_WriteObject(v, opts)
end
end
end
end
end
end,
}
--[[---------------------------------------------------------------------------
API support.
--]]---------------------------------------------------------------------------
function LibSerialize:IsSerializableType(...)
return self:_CanSerialize(canSerializeFnOptions, ...)
end
function LibSerialize:SerializeEx(opts, ...)
self:_ClearReferences()
local WriteString, FlushWriter = CreateWriter()
self._writeString = WriteString
self:_WriteByte(MINOR)
-- Create a combined options table, starting with the defaults
-- and then overwriting any user-supplied keys.
local combinedOpts = {}
for k, v in pairs(defaultOptions) do
combinedOpts[k] = v
end
for k, v in pairs(opts) do
combinedOpts[k] = v
end
for i = 1, select("#", ...) do
local input = select(i, ...)
if not self:_WriteObject(input, combinedOpts) then
-- An unserializable object was passed as an argument.
-- Write nil into its slot so that we deserialize a
-- consistent number of objects from the resulting string.
self:_WriteObject(nil, combinedOpts)
end
end
self:_ClearReferences()
return FlushWriter()
end
function LibSerialize:Serialize(...)
return self:SerializeEx(defaultOptions, ...)
end
function LibSerialize:DeserializeValue(input)
self:_ClearReferences()
local ReadBytes, ReaderBytesLeft = CreateReader(input)
self._readBytes = ReadBytes
-- Since there's only one compression version currently,
-- no extra work needs to be done to decode the data.
local version = self:_ReadByte()
assert(version == MINOR)
-- Since the objects we read may be nil, we need to explicitly
-- track the number of results and assign by index so that we
-- can call unpack() successfully at the end.
local output = {}
local outputSize = 0
while ReaderBytesLeft() > 0 do
outputSize = outputSize + 1
output[outputSize] = self:_ReadObject()
end
self:_ClearReferences()
if ReaderBytesLeft() < 0 then
error("Reader went past end of input")
end
return unpack(output, 1, outputSize)
end
function LibSerialize:_PostDeserialize(...)
self:_ClearReferences()
return ...
end
function LibSerialize:Deserialize(input)
return self:_PostDeserialize(pcall(self.DeserializeValue, self, input))
end
return LibSerialize