TradeSkillMaster/LibTSM/Util/HSLuv.lua

254 lines
7.0 KiB
Lua

-- ------------------------------------------------------------------------------ --
-- TradeSkillMaster --
-- https://tradeskillmaster.com --
-- All Rights Reserved - Detailed license information included with addon. --
-- ------------------------------------------------------------------------------ --
-- NOTE: The following code is heavily based on https://github.com/hsluv/hsluv-lua, with some
-- modifications to work properly with TSM. Its original license is below:
--[[
Lua implementation of HSLuv and HPLuv color spaces
Homepage: http://www.hsluv.org/
Copyright (C) 2019 Alexei Boronine
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
]]
local _, TSM = ...
local HSLuv = TSM.Init("Util.HSLuv")
local Math = TSM.Include("Util.Math")
local private = {}
local M = {
{ 3.240969941904521, -1.537383177570093, -0.498610760293 },
{ -0.96924363628087, 1.87596750150772, 0.041555057407175 },
{ 0.055630079696993, -0.20397695888897, 1.056971514242878 }
}
local M_INV = {
{ 0.41239079926595, 0.35758433938387, 0.18048078840183 },
{ 0.21263900587151, 0.71516867876775, 0.072192315360733 },
{ 0.019330818715591, 0.11919477979462, 0.95053215224966 }
}
local REF_Y = 1.0
local REF_U = 0.19783000664283
local REF_V = 0.46831999493879
local KAPPA = 903.2962962
local EPSILON = 0.0088564516
-- ============================================================================
-- Module Functions
-- ============================================================================
function HSLuv.ToRGB(h, s, l)
return private.HSLuvToRGB(h, s, l)
end
function HSLuv.FromRGB(r, g, b)
return private.RGBToHSLuv(r, g, b)
end
-- ============================================================================
-- Private Helper Functions
-- ============================================================================
function private.MaxSafeChromaForLH(l, h)
local hrad = h / 360 * math.pi * 2
local chroma = 1.7976931348623157e+308
local sub1 = ((l + 16) ^ 3) / 1560896
local sub2 = nil
if sub1 > EPSILON then
sub2 = sub1
else
sub2 = l / KAPPA
end
for i = 1, 3 do
for t = 0, 1 do
local top1 = (284517 * M[i][1] - 94839 * M[i][3]) * sub2
local top2 = (838422 * M[i][3] + 769860 * M[i][2] + 731718 * M[i][1]) * l * sub2 - 769860 * t * l
local bottom = (632260 * M[i][3] - 126452 * M[i][2]) * sub2 + 126452 * t
if bottom ~= 0 then
local slope = top1 / bottom
local intercept = top2 / bottom
if hrad ~= 0 or slope ~= 0 then
local length = intercept / (math.sin(hrad) - slope * math.cos(hrad))
if length >= 0 then
chroma = min(chroma, length)
end
end
end
end
end
return chroma
end
function private.DotProduct(a, b1, b2, b3)
return a[1] * b1 + a[2] * b2 + a[3] * b3
end
function private.FromLinear(c)
if c <= 0.0031308 then
return 12.92 * c
else
return 1.055 * (c ^ 0.416666666666666685) - 0.055
end
end
function private.ToLinear(c)
if c > 0.04045 then
return ((c + 0.055) / 1.055) ^ 2.4
else
return c / 12.92
end
end
function private.XYZToRGB(x, y, z)
local r = private.FromLinear(private.DotProduct(M[1], x, y, z))
local g = private.FromLinear(private.DotProduct(M[2], x, y, z))
local b = private.FromLinear(private.DotProduct(M[3], x, y, z))
return r, g, b
end
function private.RGBToXYZ(r, g, b)
r = private.ToLinear(r)
g = private.ToLinear(g)
b = private.ToLinear(b)
local x = private.DotProduct(M_INV[1], r, g, b)
local y = private.DotProduct(M_INV[2], r, g, b)
local z = private.DotProduct(M_INV[3], r, g, b)
return x, y, z
end
function private.YToL(Y)
if Y <= EPSILON then
return Y / REF_Y * KAPPA
else
return 116 * ((Y / REF_Y) ^ 0.333333333333333315) - 16
end
end
function private.LToY(L)
if L <= 8 then
return REF_Y * L / KAPPA
else
return REF_Y * (((L + 16) / 116) ^ 3)
end
end
function private.XYZToLUV(x, y, z)
local divider = x + 15 * y + 3 * z
local varU = 4 * x
local varV = 9 * y
if divider ~= 0 then
varU = varU / divider
varV = varV / divider
else
varU = 0
varV = 0
end
local L = private.YToL(y)
if L == 0 then
return 0, 0, 0
end
return L, 13 * L * (varU - REF_U), 13 * L * (varV - REF_V)
end
function private.LUVToXYZ(l, u, v)
if l == 0 then
return 0, 0, 0
end
local varU = u / (13 * l) + REF_U
local varV = v / (13 * l) + REF_V
local Y = private.LToY(l)
local X = 0 - (9 * Y * varU) / ((((varU - 4) * varV) - varU * varV))
return X, Y, (9 * Y - 15 * varV * Y - varV * X) / (3 * varV)
end
function private.LUVToLCH(l, u, v)
local C = math.sqrt(u * u + v * v)
local H
if C < 0.00000001 then
H = 0
else
H = math.atan2(v, u) * 180.0 / 3.1415926535897932
if H < 0 then
H = 360 + H
end
end
return l, C, H
end
function private.LCHToLUV(l, c, h)
local hrad = h / 360.0 * 2 * math.pi
return l, math.cos(hrad) * c, math.sin(hrad) * c
end
function private.HSLuvToLCH(h, s, l)
if l > 99.9999999 then
return 100, 0, h
end
if l < 0.00000001 then
return 0, 0, h
end
return l, private.MaxSafeChromaForLH(l, h) / 100 * s, h
end
function private.LCHToHSLuv(l, c, h)
local max_chroma = private.MaxSafeChromaForLH(l, h)
if l > 99.9999999 then
return h, 0, 100
end
if l < 0.00000001 then
return h, 0, 0
end
return h, c / max_chroma * 100, l
end
function private.HSLuvToRGB(h, s, l)
local v1, v2, v3 = h, s, l
v1, v2, v3 = private.HSLuvToLCH(v1, v2, v3)
v1, v2, v3 = private.LCHToLUV(v1, v2, v3)
v1, v2, v3 = private.LUVToXYZ(v1, v2, v3)
local r, g, b = private.XYZToRGB(v1, v2, v3)
r = Math.Round(r * 255)
g = Math.Round(g * 255)
b = Math.Round(b * 255)
assert(r >= 0 and r <= 255)
assert(g >= 0 and g <= 255)
assert(b >= 0 and b <= 255)
return r, g, b
end
function private.RGBToHSLuv(r, g, b)
local v1, v2, v3 = r / 255, g / 255, b / 255
v1, v2, v3 = private.RGBToXYZ(v1, v2, v3)
v1, v2, v3 = private.XYZToLUV(v1, v2, v3)
v1, v2, v3 = private.LUVToLCH(v1, v2, v3)
local h, s, l = private.LCHToHSLuv(v1, v2, v3)
h = Math.Round(h) % 360
s = Math.Round(s)
l = Math.Round(l)
assert(h >= 0 and h < 360)
assert(s >= 0 and s <= 100)
assert(l >= 0 and l <= 100)
return h, s, l
end