mxw_wotlk_azerothcore/deps/acelite/ace/Stats.cpp

413 lines
11 KiB
C++
Raw Permalink Normal View History

2020-10-30 23:45:46 -04:00
#include "ace/Stats.h"
#if !defined (__ACE_INLINE__)
# include "ace/Stats.inl"
#endif /* __ACE_INLINE__ */
#include "ace/OS_NS_stdio.h"
#include "ace/OS_NS_string.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_UINT32
ACE_Stats_Value::fractional_field (void) const
{
if (precision () == 0)
{
return 1;
}
else
{
ACE_UINT32 field = 10;
for (u_int i = 0; i < precision () - 1; ++i)
{
field *= 10;
}
return field;
}
}
int
ACE_Stats::sample (const ACE_INT32 value)
{
if (samples_.enqueue_tail (value) == 0)
{
++number_of_samples_;
if (number_of_samples_ == 0)
{
// That's a lot of samples :-)
overflow_ = EFAULT;
return -1;
}
if (value < min_)
min_ = value;
if (value > max_)
max_ = value;
return 0;
}
else
{
// Probably failed due to running out of memory when trying to
// enqueue the new value.
overflow_ = errno;
return -1;
}
}
void
ACE_Stats::mean (ACE_Stats_Value &m,
const ACE_UINT32 scale_factor)
{
if (number_of_samples_ > 0)
{
const ACE_UINT64 ACE_STATS_INTERNAL_OFFSET =
ACE_UINT64_LITERAL (0x100000000);
ACE_UINT64 sum = ACE_STATS_INTERNAL_OFFSET;
ACE_Unbounded_Queue_Iterator<ACE_INT32> i (samples_);
while (! i.done ())
{
ACE_INT32 *sample;
if (i.next (sample))
{
sum += *sample;
i.advance ();
}
}
// sum_ was initialized with ACE_STATS_INTERNAL_OFFSET, so
// subtract that off here.
quotient (sum - ACE_STATS_INTERNAL_OFFSET,
number_of_samples_ * scale_factor,
m);
}
else
{
m.whole (0);
m.fractional (0);
}
}
int
ACE_Stats::std_dev (ACE_Stats_Value &std_dev,
const ACE_UINT32 scale_factor)
{
if (number_of_samples_ <= 1)
{
std_dev.whole (0);
std_dev.fractional (0);
}
else
{
const ACE_UINT32 field = std_dev.fractional_field ();
// The sample standard deviation is:
//
// sqrt (sum (sample_i - mean)^2 / (number_of_samples_ - 1))
ACE_UINT64 mean_scaled;
// Calculate the mean, scaled, so that we don't lose its
// precision.
ACE_Stats_Value avg (std_dev.precision ());
mean (avg, 1u);
avg.scaled_value (mean_scaled);
// Calculate the summation term, of squared differences from the
// mean.
ACE_UINT64 sum_of_squares = 0;
ACE_Unbounded_Queue_Iterator<ACE_INT32> i (samples_);
while (! i.done ())
{
ACE_INT32 *sample;
if (i.next (sample))
{
const ACE_UINT64 original_sum_of_squares = sum_of_squares;
// Scale up by field width so that we don't lose the
// precision of the mean. Carefully . . .
const ACE_UINT64 product (*sample * field);
ACE_UINT64 difference;
// NOTE: please do not reformat this code! It //
// works with the Diab compiler the way it is! //
if (product >= mean_scaled) //
{ //
difference = product - mean_scaled; //
} //
else //
{ //
difference = mean_scaled - product; //
} //
// NOTE: please do not reformat this code! It //
// works with the Diab compiler the way it is! //
// Square using 64-bit arithmetic.
sum_of_squares += difference * ACE_U64_TO_U32 (difference);
i.advance ();
if (sum_of_squares < original_sum_of_squares)
{
overflow_ = ENOSPC;
return -1;
}
}
}
// Divide the summation by (number_of_samples_ - 1), to get the
// variance. In addition, scale the variance down to undo the
// mean scaling above. Otherwise, it can get too big.
ACE_Stats_Value variance (std_dev.precision ());
quotient (sum_of_squares,
(number_of_samples_ - 1) * field * field,
variance);
// Take the square root of the variance to get the standard
// deviation. First, scale up . . .
ACE_UINT64 scaled_variance;
variance.scaled_value (scaled_variance);
// And scale up, once more, because we'll be taking the square
// root.
scaled_variance *= field;
ACE_Stats_Value unscaled_standard_deviation (std_dev.precision ());
square_root (scaled_variance,
unscaled_standard_deviation);
// Unscale.
quotient (unscaled_standard_deviation,
scale_factor * field,
std_dev);
}
return 0;
}
void
ACE_Stats::reset (void)
{
overflow_ = 0u;
number_of_samples_ = 0u;
min_ = 0x7FFFFFFF;
max_ = -0x8000 * 0x10000;
samples_.reset ();
}
int
ACE_Stats::print_summary (const u_int precision,
const ACE_UINT32 scale_factor,
FILE *file) const
{
ACE_TCHAR mean_string [128];
ACE_TCHAR std_dev_string [128];
ACE_TCHAR min_string [128];
ACE_TCHAR max_string [128];
int success = 0;
for (int tmp_precision = precision;
! overflow_ && ! success && tmp_precision >= 0;
--tmp_precision)
{
// Build a format string, in case the C library doesn't support %*u.
ACE_TCHAR format[32];
if (tmp_precision == 0)
ACE_OS::sprintf (format, ACE_TEXT ("%%%d"), tmp_precision);
else
ACE_OS::sprintf (format, ACE_TEXT ("%%d.%%0%du"), tmp_precision);
ACE_Stats_Value u (tmp_precision);
((ACE_Stats *) this)->mean (u, scale_factor);
ACE_OS::sprintf (mean_string, format, u.whole (), u.fractional ());
ACE_Stats_Value sd (tmp_precision);
if (((ACE_Stats *) this)->std_dev (sd, scale_factor))
{
success = 0;
continue;
}
else
{
success = 1;
}
ACE_OS::sprintf (std_dev_string, format, sd.whole (), sd.fractional ());
ACE_Stats_Value minimum (tmp_precision), maximum (tmp_precision);
if (min_ != 0)
{
const ACE_UINT64 m (min_);
quotient (m, scale_factor, minimum);
}
if (max_ != 0)
{
const ACE_UINT64 m (max_);
quotient (m, scale_factor, maximum);
}
ACE_OS::sprintf (min_string, format,
minimum.whole (), minimum.fractional ());
ACE_OS::sprintf (max_string, format,
maximum.whole (), maximum.fractional ());
}
if (success == 1)
{
ACE_OS::fprintf (file, ACE_TEXT ("samples: %u (%s - %s); mean: ")
ACE_TEXT ("%s; std dev: %s\n"),
samples (), min_string, max_string,
mean_string, std_dev_string);
return 0;
}
else
{
ACE_OS::fprintf (file,
ACE_TEXT ("ACE_Stats::print_summary: OVERFLOW: %s\n"),
ACE_OS::strerror (overflow_));
return -1;
}
}
void
ACE_Stats::quotient (const ACE_UINT64 dividend,
const ACE_UINT32 divisor,
ACE_Stats_Value &quotient)
{
// The whole part of the division comes from simple integer division.
quotient.whole (static_cast<ACE_UINT32> (divisor == 0
? 0 : dividend / divisor));
if (quotient.precision () > 0 || divisor == 0)
{
const ACE_UINT32 field = quotient.fractional_field ();
// Fractional = (dividend % divisor) * 10^precision / divisor
// It would be nice to add round-up term:
// Fractional = (dividend % divisor) * 10^precision / divisor +
// 10^precision/2 / 10^precision
// = ((dividend % divisor) * 10^precision + divisor) /
// divisor
quotient.fractional (static_cast<ACE_UINT32> (
dividend % divisor * field / divisor));
}
else
{
// No fractional portion is requested, so don't bother
// calculating it.
quotient.fractional (0);
}
}
void
ACE_Stats::quotient (const ACE_Stats_Value &dividend,
const ACE_UINT32 divisor,
ACE_Stats_Value &quotient)
{
// The whole part of the division comes from simple integer division.
quotient.whole (divisor == 0 ? 0 : dividend.whole () / divisor);
if (quotient.precision () > 0 || divisor == 0)
{
const ACE_UINT32 field = quotient.fractional_field ();
// Fractional = (dividend % divisor) * 10^precision / divisor.
quotient.fractional (dividend.whole () % divisor * field / divisor +
dividend.fractional () / divisor);
}
else
{
// No fractional portion is requested, so don't bother
// calculating it.
quotient.fractional (0);
}
}
void
ACE_Stats::square_root (const ACE_UINT64 n,
ACE_Stats_Value &square_root)
{
ACE_UINT32 floor = 0;
ACE_UINT32 ceiling = 0xFFFFFFFFu;
ACE_UINT32 mid = 0;
u_int i;
// The maximum number of iterations is log_2 (2^64) == 64.
for (i = 0; i < 64; ++i)
{
mid = (ceiling - floor) / 2 + floor;
if (floor == mid)
// Can't divide the interval any further.
break;
else
{
// Multiply carefully to avoid overflow.
ACE_UINT64 mid_squared = mid; mid_squared *= mid;
if (mid_squared == n)
break;
else if (mid_squared < n)
floor = mid;
else
ceiling = mid;
}
}
square_root.whole (mid);
ACE_UINT64 mid_squared = mid; mid_squared *= mid;
if (square_root.precision () && mid_squared < n)
{
// (mid * 10^precision + fractional)^2 ==
// n^2 * 10^(precision * 2)
const ACE_UINT32 field = square_root.fractional_field ();
floor = 0;
ceiling = field;
mid = 0;
// Do the 64-bit arithmetic carefully to avoid overflow.
ACE_UINT64 target = n;
target *= field;
target *= field;
ACE_UINT64 difference = 0;
for (i = 0; i < square_root.precision (); ++i)
{
mid = (ceiling - floor) / 2 + floor;
ACE_UINT64 current = square_root.whole () * field + mid;
current *= square_root.whole () * field + mid;
if (floor == mid)
{
difference = target - current;
break;
}
else if (current <= target)
floor = mid;
else
ceiling = mid;
}
// Check to see if the fractional part should be one greater.
ACE_UINT64 next = square_root.whole () * field + mid + 1;
next *= square_root.whole () * field + mid + 1;
square_root.fractional (next - target < difference ? mid + 1 : mid);
}
else
{
// No fractional portion is requested, so don't bother
// calculating it.
square_root.fractional (0);
}
}
ACE_END_VERSIONED_NAMESPACE_DECL