mxw_wotlk_azerothcore/deps/g3dlite/source/Box.cpp

474 lines
12 KiB
C++
Raw Normal View History

2020-10-30 23:45:46 -04:00
/**
\file G3D.lib/source/Box.cpp
Box class
\maintainer Morgan McGuire, http://graphics.cs.williams.edu, Michael Mara
\created 2001-06-02
\edited 2013-04-13
*/
#include "G3D/Box.h"
#include "G3D/debug.h"
#include "G3D/Plane.h"
#include "G3D/AABox.h"
#include "G3D/CoordinateFrame.h"
#include "G3D/vectorMath.h"
#include "G3D/Any.h"
namespace G3D {
Box::Box() : _area(0), _volume(0) {
}
Box::Box
(const Point3& min,
const Point3& max) {
init(min.min(max), min.max(max));
}
Box::Box(const Point3& min) {
init(min, min);
}
Box::Box
(const Point3& min,
const Point3& max,
const CFrame& c) {
init(min.min(max), min.max(max));
*this = c.toWorldSpace(*this);
}
Box::Box(const AABox& b) {
debugAssert(! b.isEmpty());
init(b.low(), b.high());
}
Box::Box(BinaryInput& b) {
deserialize(b);
}
Box::Box(const Any& a) {
if (a.name() == "Box::inf") {
*this = Box::inf();
} else {
a.verifyName("Box", "AABox", "Point3");
if (a.name() == "Point3") {
*this = Box(Point3(a));
} else if (a.size() == 1) {
// Single point
*this = Box(Point3(a[0]));
} else if (a.size() == 2) {
*this = Box(Point3(a[0]), Point3(a[1]));
} else {
// Oriented box
a.verifySize(2);
a.verifyName("Box");
*this = Box(Point3(a[0]), Point3(a[1]), CFrame(a[2]));
}
}
}
Any Box::toAny() const {
if (! isFinite()) {
return Any(Any::ARRAY, "Box::inf");
} else {
CFrame c;
getLocalFrame(c);
if (c.rotation == Matrix3::identity()) {
// Aligned box
AABox b;
getBounds(b);
return b.toAny();
} else {
// Oriented box
Any a(Any::ARRAY, "Box");
AABox b;
c.toObjectSpace(*this).getBounds(b);
a.append(b.low(), b.high(), c);
return a;
}
}
}
Box Box::operator*(float f) const {
Box b;
for (int i = 0; i < 3; ++i) {
b._edgeVector[i] = _edgeVector[i] * f;
b._center = _center * f;
b._area = _area * square(f * f);
b._volume = _area * (f * f * f);
}
return b;
}
void Box::serialize(BinaryOutput& b) const {
int i;
for (i = 0; i < 3; ++i) {
_edgeVector[i].serialize(b);
}
_center.serialize(b);
// Other state can be reconstructed
}
void Box::deserialize(class BinaryInput& b) {
int i;
for (i = 0; i < 3; ++i) {
_edgeVector[i].deserialize(b);
}
_center.deserialize(b);
float extent0 = extent(0);
float extent1 = extent(1);
float extent2 = extent(2);
_volume = extent0 * extent1 * extent2;
_area = 2 *
(extent0 * extent1 +
extent1 * extent2 +
extent2 * extent0);
}
void Box::init
(const Point3& min,
const Point3& max) {
debugAssert(
(min.x <= max.x) &&
(min.y <= max.y) &&
(min.z <= max.z));
_center = (max + min) * 0.5f;
Vector3 bounds = Vector3(max.x - min.x, max.y - min.y, max.z - min.z);
_edgeVector[0] = Vector3(bounds.x, 0, 0);
_edgeVector[1] = Vector3(0, bounds.y, 0);
_edgeVector[2] = Vector3(0, 0, bounds.z);
bool finiteExtent = true;
for (int i = 0; i < 3; ++i) {
if (! G3D::isFinite(extent(i))) {
finiteExtent = false;
// If the extent is infinite along an axis, make the center zero to avoid NaNs
_center[i] = 0.0f;
}
}
if (finiteExtent) {
_volume = bounds.x * bounds.y * bounds.z;
} else {
_volume = G3D::finf();
}
debugAssert(! _edgeVector[0].isNaN());
_area = 2 *
(bounds.x * bounds.y +
bounds.y * bounds.z +
bounds.z * bounds.x);
}
Vector3 Box::corner(int i) const{
debugAssert(i < 8);
// The corner forms a bit mask (xyz), where a one indicates we should
// add half of the corresponding edge vector from center, and a zero indicates
// we should subtract it. Note:
// 1 = 001
// 2 = 010
// 4 = 100
//
// The following bit-hacky code shows this directly:
// return _center + ((_edgeVector[0] * ((i&1) - 0.5) +
// _edgeVector[1] * (((i>>1)&1) - 0.5) +
// _edgeVector[2] * (((i>>2)&1) - 0.5)));
// This method is implemented as a swtich statement due to being marginally faster than the bit-hack method
// Also, the _center + 0.5f * (...) is repeated every time for similarly speed-based reasons.
switch(i) {
case 0: return _center + (0.5f * (-_edgeVector[0] - _edgeVector[1] - _edgeVector[2]));
case 1: return _center + (0.5f * ( _edgeVector[0] - _edgeVector[1] - _edgeVector[2]));
case 2: return _center + (0.5f * (-_edgeVector[0] + _edgeVector[1] - _edgeVector[2]));
case 3: return _center + (0.5f * ( _edgeVector[0] + _edgeVector[1] - _edgeVector[2]));
case 4: return _center + (0.5f * (-_edgeVector[0] - _edgeVector[1] + _edgeVector[2]));
case 5: return _center + (0.5f * ( _edgeVector[0] - _edgeVector[1] + _edgeVector[2]));
case 6: return _center + (0.5f * (-_edgeVector[0] + _edgeVector[1] + _edgeVector[2]));
default: return _center + (0.5f * ( _edgeVector[0] + _edgeVector[1] + _edgeVector[2]));//case 7
}
}
float Box::volume() const {
return _volume;
}
float Box::area() const {
return _area;
}
void Box::getLocalFrame(CoordinateFrame& frame) const {
const Vector3& axis0 = axis(0);
const Vector3& axis1 = axis(1);
const Vector3& axis2 = axis(2);
frame.rotation = Matrix3(
axis0[0], axis1[0], axis2[0],
axis0[1], axis1[1], axis2[1],
axis0[2], axis1[2], axis2[2]);
frame.translation = _center;
}
CoordinateFrame Box::localFrame() const {
CoordinateFrame out;
getLocalFrame(out);
return out;
}
void Box::getFaceCorners(int f, Point3& v0, Point3& v1, Point3& v2, Point3& v3) const {
switch (f) {
case 0:
v0 = corner(0); v1 = corner(2); v2 = corner(3); v3 = corner(1);
break;
case 1:
v0 = corner(1); v1 = corner(3); v2 = corner(7); v3 = corner(5);
break;
case 2:
v0 = corner(6); v1 = corner(4); v2 = corner(5); v3 = corner(7);
break;
case 3:
v0 = corner(3); v1 = corner(2); v2 = corner(6); v3 = corner(7);
break;
case 4:
v0 = corner(2); v1 = corner(0); v2 = corner(4); v3 = corner(6);
break;
case 5:
v0 = corner(1); v1 = corner(5); v2 = corner(4); v3 = corner(0);
break;
default:
debugAssert((f >= 0) && (f < 6));
}
}
int Box::dummy = 0;
bool Box::culledBy
(const Array<Plane>& plane,
int& cullingPlane,
const uint32 _inMask,
uint32& childMask) const {
uint32 inMask = _inMask;
assert(plane.size() < 31);
childMask = 0;
// See if there is one plane for which all of the
// vertices are in the negative half space.
for (int p = 0; p < plane.size(); ++p) {
// Only test planes that are not masked
if ((inMask & 1) != 0) {
int numContained = 0;
int v = 0;
// We can early-out only if we have found one point on each
// side of the plane (i.e. if we are straddling). That
// occurs when (numContained < v) && (numContained > 0)
for (v = 0; (v < 8) && ((numContained == v) || (numContained == 0)); ++v) {
if (plane[p].halfSpaceContains(corner(v))) {
++numContained;
}
}
if (numContained == 0) {
// Plane p culled the box
cullingPlane = p;
// The caller should not recurse into the children,
// since the parent is culled. If they do recurse,
// make them only test against this one plane, which
// will immediately cull the volume.
childMask = 1 << p;
return true;
} else if (numContained < v) {
// The bounding volume straddled the plane; we have
// to keep testing against this plane
childMask |= (1 << p);
}
}
// Move on to the next bit.
inMask = inMask >> 1;
}
// None of the planes could cull this box
cullingPlane = -1;
return false;
}
bool Box::culledBy
(const Array<Plane>& plane,
int& cullingPlane,
const uint32 _inMask) const {
uint32 inMask = _inMask;
assert(plane.size() < 31);
// See if there is one plane for which all of the
// vertices are in the negative half space.
for (int p = 0; p < plane.size(); ++p) {
// Only test planes that are not masked
if ((inMask & 1) != 0) {
bool culled = true;
int v;
// Assume this plane culls all points. See if there is a point
// not culled by the plane... early out when at least one point
// is in the positive half space.
for (v = 0; (v < 8) && culled; ++v) {
culled = ! plane[p].halfSpaceContains(corner(v));
}
if (culled) {
// Plane p culled the box
cullingPlane = p;
return true;
}
}
// Move on to the next bit.
inMask = inMask >> 1;
}
// None of the planes could cull this box
cullingPlane = -1;
return false;
}
bool Box::contains
(const Point3& point) const {
// Form axes from three edges, transform the point into that
// space, and perform 3 interval tests
// TODO: Write in a more intuitive way. I left it as it was before after figuring it out, but
// this should make no sense to someone who is just starting to read this code.
const Vector3& u = _edgeVector[2];
const Vector3& v = _edgeVector[1];
const Vector3& w = _edgeVector[0];
Matrix3 M = Matrix3(u.x, v.x, w.x,
u.y, v.y, w.y,
u.z, v.z, w.z);
// M^-1 * (point - _corner[0]) = point in unit cube's object space
// compute the inverse of M
Vector3 osPoint = M.inverse() * (point - corner(0));
return
(osPoint.x >= 0) &&
(osPoint.y >= 0) &&
(osPoint.z >= 0) &&
(osPoint.x <= 1) &&
(osPoint.y <= 1) &&
(osPoint.z <= 1);
}
void Box::getRandomSurfacePoint(Vector3& P, Vector3& N) const {
float aXY = extent(0) * extent(1);
float aYZ = extent(1) * extent(2);
float aZX = extent(2) * extent(0);
float r = (float)uniformRandom(0, aXY + aYZ + aZX);
// Choose evenly between positive and negative face planes
float d = (uniformRandom(0, 1) < 0.5f) ? -1.0f : 1.0f;
// The probability of choosing a given face is proportional to
// its area.
if (r < aXY) {
P = _edgeVector[0] * (float)uniformRandom(-0.5, 0.5) +
_edgeVector[1] * (float)uniformRandom(-0.5, 0.5) +
_center + _edgeVector[2] * d * 0.5f;
N = axis(2) * d;
} else if (r < aYZ) {
P = _edgeVector[1] * (float)uniformRandom(-0.5, 0.5) +
_edgeVector[2] * (float)uniformRandom(-0.5, 0.5) +
_center + _edgeVector[0] * d * 0.5f;
N = axis(0) * d;
} else {
P = _edgeVector[2] * (float)uniformRandom(-0.5, 0.5) +
_edgeVector[0] *(float) uniformRandom(-0.5, 0.5) +
_center + _edgeVector[1] * d * 0.5f;
N = axis(1) * d;
}
}
Vector3 Box::randomInteriorPoint() const {
Vector3 sum = _center;
for (int a = 0; a < 3; ++a) {
sum += _edgeVector[a] * (float)uniformRandom(-0.5, 0.5);
}
return sum;
}
Box Box::inf() {
return Box(-Vector3::inf(), Vector3::inf());
}
void Box::getBounds(AABox& aabb) const {
debugAssert(! _edgeVector[0].isNaN());
debugAssert(! _center.isNaN());
aabb = AABox::empty();
for (int i = 0; i < 8; ++i) {
aabb.merge(corner(i));
}
}
} // namespace