mxw_wotlk_azerothcore/deps/g3dlite/source/uint128.cpp

156 lines
4.5 KiB
C++
Raw Normal View History

2020-10-30 23:45:46 -04:00
/**
@file uint128.cpp
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@author Kyle Whitson
@created 2008-07-17
@edited 2008-07-17
*/
#include "G3D/uint128.h"
namespace G3D {
/** Adds two 64-bit integers, placing the result and the overflow into 64-bit integers.*/
static void addAndCarry(const uint64& _a, const uint64& _b, uint64& carry, uint64& result) {
// Break each number into 4 32-bit chunks. Since we are using uints, right-shifting will fill with zeros.
// This eliminates the need to and with 0xFFFFFFFF.
uint32 a [2] = {static_cast<uint32>(_a & 0xFFFFFFFF), static_cast<uint32>(_a >> 32)};
uint32 b [2] = {static_cast<uint32>(_b & 0xFFFFFFFF), static_cast<uint32>(_b >> 32)};
uint64 tmp = uint64(a[0]) + b[0];
result = tmp & 0xFFFFFFFF;
uint32 c = tmp >> 32;
tmp = uint64(c) + a[1] + b[1];
result += tmp << 32;
carry = (tmp >> 32);
}
/** Multiplies two unsigned 64-bit integers, placing the result into one 64-bit int and the overflow into another.*/
void multiplyAndCarry(const uint64& _a, const uint64& _b, uint64& carry, uint64& result) {
// Break each number into 4 32-bit chunks. Since we are using uints, right-shifting will fill with zeros.
// This eliminates the need to and with 0xFFFFFFFF.
uint32 a [2] = {static_cast<uint32>(_a & 0xFFFFFFFF), static_cast<uint32>(_a >> 32)};
uint32 b [2] = {static_cast<uint32>(_b & 0xFFFFFFFF), static_cast<uint32>(_b >> 32)};
uint64 prod [2][2];
for(int i = 0; i < 2; ++i) {
for(int j = 0; j < 2; ++j) {
prod[i][j] = uint64(a[i]) * b[j];
}
}
// The product of the low bits of a and b will always fit into the result
result = prod[0][0];
// The product of the high bits of a and b will never fit into the result
carry = prod[1][1];
// The high 32 bits of prod[0][1] and prod[1][0] will never fit into the result
carry += prod[0][1] >> 32;
carry += prod[1][0] >> 32;
uint64 tmp;
addAndCarry(result, (prod[0][1] << 32), tmp, result);
carry += tmp;
addAndCarry(result, (prod[1][0] << 32), tmp, result);
carry += tmp;
}
uint128::uint128(const uint64& hi, const uint64& lo) : hi(hi), lo(lo) {
}
uint128::uint128(const uint64& lo) : hi(0), lo(lo) {
}
uint128& uint128::operator+=(const uint128& x) {
G3D::uint64 carry;
addAndCarry(lo, x.lo, carry, lo);
// Adding the carry will change hi. Save the old hi bits in case this == x.
const uint64 xHi = x.hi;
hi += carry;
hi += xHi;
return *this;
}
uint128& uint128::operator*=(const uint128& x) {
// The low bits will get overwritten when doing the multiply, so back up both (in case &x == this)
const uint64 oldLo = lo;
const uint64 oldXLo = x.lo;
G3D::uint64 carry;
multiplyAndCarry(oldLo, oldXLo, carry, lo);
// Overflow doesn't matter here because the result is going into hi - any overflow will exceed the capacity of a 128-bit number
// Note: hi * x.hi will always overflow, since (x * 2^64) * (y * 2^64) = x*y*(2^128). The largest number expressable in 128 bits is
// 2^128 - 1.
hi = carry + (oldLo * x.hi) + (hi * oldXLo);
return *this;
}
uint128& uint128::operator^=(const uint128& x) {
hi ^= x.hi;
lo ^= x.lo;
return *this;
}
uint128& uint128::operator&=(const uint128& x) {
hi &= x.hi;
lo &= x.lo;
return *this;
}
uint128& uint128::operator|=(const uint128& x) {
hi |= x.hi;
lo |= x.lo;
return *this;
}
bool uint128::operator==(const uint128& x) {
return (hi == x.hi) && (lo == x.lo);
}
uint128& uint128::operator>>=(const int x) {
//Before shifting, mask out the bits that will be shifted out of hi.
//Put a 1 in the first bit that will not be lost in the shift, then subtract 1 to get the mask.
uint64 mask = ((uint64)1L << x) - 1;
uint64 tmp = hi & mask;
hi >>= x;
//Shift lo and add the bits shifted down from hi
lo = (lo >> x) + (tmp << (64 - x));
return *this;
}
uint128& uint128::operator<<=(const int x) {
//Before shifting, mask out the bits that will be shifted out of lo.
//Put a 1 in the last bit that will be lost in the shift, then subtract 1 to get the logical inverse of the mask.
//A bitwise NOT will then produce the correct mask.
uint64 mask = ~((((uint64)1L) << (64 - x)) - 1);
uint64 tmp = lo & mask;
lo <<= x;
//Shift hi and add the bits shifted up from lo
hi = (hi << x) + (tmp >> (64 - x));
return *this;
}
uint128 uint128::operator&(const uint128& x) {
return uint128(hi & x.hi, lo & x.lo);
}
}