358 lines
14 KiB
C++
358 lines
14 KiB
C++
/*
|
|
* Copyright notice
|
|
* ================
|
|
* GNU General Public License http://www.gnu.org/licenses/gpl.html
|
|
* This C++ implementation of SFMT contains parts of the original C code
|
|
* which was published under the following BSD license, which is therefore
|
|
* in effect in addition to the GNU General Public License.
|
|
* Copyright (c) 2006, 2007 by Mutsuo Saito, Makoto Matsumoto and Hiroshima University.
|
|
* Copyright (c) 2008 by Agner Fog.
|
|
* Copyright (c) 2008-2013 Trinity Core
|
|
*
|
|
* BSD License:
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* > Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* > Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* > Neither the name of the Hiroshima University nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef SFMT_H
|
|
#define SFMT_H
|
|
|
|
#include <emmintrin.h> // Define SSE2 intrinsics
|
|
#include "randomc.h" // Define integer types etc
|
|
#include <time.h>
|
|
#include <new>
|
|
|
|
// Choose one of the possible Mersenne exponents.
|
|
// Higher values give longer cycle length and use more memory:
|
|
//#define MEXP 607
|
|
//#define MEXP 1279
|
|
//#define MEXP 2281
|
|
//#define MEXP 4253
|
|
#define MEXP 11213
|
|
//#define MEXP 19937
|
|
//#define MEXP 44497
|
|
|
|
// Define constants for the selected Mersenne exponent:
|
|
#if MEXP == 44497
|
|
#define SFMT_N 348 // Size of state vector
|
|
#define SFMT_M 330 // Position of intermediate feedback
|
|
#define SFMT_SL1 5 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 9 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xeffffffb,0xdfbebfff,0xbfbf7bef,0x9ffd7bff // AND mask
|
|
#define SFMT_PARITY 1,0,0xa3ac4000,0xecc1327a // Period certification vector
|
|
|
|
#elif MEXP == 19937
|
|
#define SFMT_N 156 // Size of state vector
|
|
#define SFMT_M 122 // Position of intermediate feedback
|
|
#define SFMT_SL1 18 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 11 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xdfffffef,0xddfecb7f,0xbffaffff,0xbffffff6 // AND mask
|
|
#define SFMT_PARITY 1,0,0,0x13c9e684 // Period certification vector
|
|
|
|
#elif MEXP == 11213
|
|
#define SFMT_N 88 // Size of state vector
|
|
#define SFMT_M 68 // Position of intermediate feedback
|
|
#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 7 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xeffff7fb,0xffffffef,0xdfdfbfff,0x7fffdbfd // AND mask
|
|
#define SFMT_PARITY 1,0,0xe8148000,0xd0c7afa3 // Period certification vector
|
|
|
|
#elif MEXP == 4253
|
|
#define SFMT_N 34 // Size of state vector
|
|
#define SFMT_M 17 // Position of intermediate feedback
|
|
#define SFMT_SL1 20 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 7 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0x9f7bffff, 0x9fffff5f, 0x3efffffb, 0xfffff7bb // AND mask
|
|
#define SFMT_PARITY 0xa8000001, 0xaf5390a3, 0xb740b3f8, 0x6c11486d // Period certification vector
|
|
|
|
#elif MEXP == 2281
|
|
#define SFMT_N 18 // Size of state vector
|
|
#define SFMT_M 12 // Position of intermediate feedback
|
|
#define SFMT_SL1 19 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 5 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xbff7ffbf, 0xfdfffffe, 0xf7ffef7f, 0xf2f7cbbf // AND mask
|
|
#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x41dfa600 // Period certification vector
|
|
|
|
#elif MEXP == 1279
|
|
#define SFMT_N 10 // Size of state vector
|
|
#define SFMT_M 7 // Position of intermediate feedback
|
|
#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 5 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xf7fefffd, 0x7fefcfff, 0xaff3ef3f, 0xb5ffff7f // AND mask
|
|
#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x20000000 // Period certification vector
|
|
|
|
#elif MEXP == 607
|
|
#define SFMT_N 5 // Size of state vector
|
|
#define SFMT_M 2 // Position of intermediate feedback
|
|
#define SFMT_SL1 15 // Left shift of W[N-1], 32-bit words
|
|
#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
|
|
#define SFMT_SR1 13 // Right shift of W[M], 32-bit words
|
|
#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
|
|
#define SFMT_MASK 0xfdff37ff, 0xef7f3f7d, 0xff777b7d, 0x7ff7fb2f // AND mask
|
|
#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x5986f054 // Period certification vector
|
|
#endif
|
|
|
|
// Functions used by SFMTRand::RandomInitByArray (UNUSED AND COMMENTED OUT)
|
|
/*
|
|
static uint32_t func1(uint32_t x) {
|
|
return (x ^ (x >> 27)) * 1664525U;
|
|
}
|
|
|
|
static uint32_t func2(uint32_t x) {
|
|
return (x ^ (x >> 27)) * 1566083941U;
|
|
}
|
|
*/
|
|
|
|
// Subfunction for the sfmt algorithm
|
|
static inline __m128i sfmt_recursion(__m128i const &a, __m128i const &b,
|
|
__m128i const &c, __m128i const &d, __m128i const &mask) {
|
|
__m128i a1, b1, c1, d1, z1, z2;
|
|
b1 = _mm_srli_epi32(b, SFMT_SR1);
|
|
a1 = _mm_slli_si128(a, SFMT_SL2);
|
|
c1 = _mm_srli_si128(c, SFMT_SR2);
|
|
d1 = _mm_slli_epi32(d, SFMT_SL1);
|
|
b1 = _mm_and_si128(b1, mask);
|
|
z1 = _mm_xor_si128(a, a1);
|
|
z2 = _mm_xor_si128(b1, d1);
|
|
z1 = _mm_xor_si128(z1, c1);
|
|
z2 = _mm_xor_si128(z1, z2);
|
|
return z2;
|
|
}
|
|
|
|
// Class for SFMT generator
|
|
class SFMTRand { // Encapsulate random number generator
|
|
friend class ACE_TSS<SFMTRand>;
|
|
|
|
public:
|
|
SFMTRand()
|
|
{
|
|
LastInterval = 0;
|
|
RandomInit((int)(time(0)));
|
|
}
|
|
|
|
void RandomInit(int seed) // Re-seed
|
|
{
|
|
// Re-seed
|
|
uint32_t i; // Loop counter
|
|
uint32_t y = seed; // Temporary
|
|
uint32_t statesize = SFMT_N*4; // Size of state vector
|
|
|
|
// Fill state vector with random numbers from seed
|
|
((uint32_t*)state)[0] = y;
|
|
const uint32_t factor = 1812433253U;// Multiplication factor
|
|
|
|
for (i = 1; i < statesize; i++) {
|
|
y = factor * (y ^ (y >> 30)) + i;
|
|
((uint32_t*)state)[i] = y;
|
|
}
|
|
|
|
// Further initialization and period certification
|
|
Init2();
|
|
}
|
|
|
|
int32_t IRandom(int32_t min, int32_t max) // Output random integer
|
|
{
|
|
// Output random integer in the interval min <= x <= max
|
|
// Slightly inaccurate if (max-min+1) is not a power of 2
|
|
if (max <= min) {
|
|
if (max == min) return min; else return 0x80000000;
|
|
}
|
|
// Assume 64 bit integers supported. Use multiply and shift method
|
|
uint32_t interval; // Length of interval
|
|
uint64_t longran; // Random bits * interval
|
|
uint32_t iran; // Longran / 2^32
|
|
|
|
interval = (uint32_t)(max - min + 1);
|
|
longran = (uint64_t)BRandom() * interval;
|
|
iran = (uint32_t)(longran >> 32);
|
|
// Convert back to signed and return result
|
|
return (int32_t)iran + min;
|
|
}
|
|
|
|
uint32_t URandom(uint32_t min, uint32_t max)
|
|
{
|
|
// Output random integer in the interval min <= x <= max
|
|
// Slightly inaccurate if (max-min+1) is not a power of 2
|
|
if (max <= min) {
|
|
if (max == min) return min; else return 0;
|
|
}
|
|
// Assume 64 bit integers supported. Use multiply and shift method
|
|
uint32_t interval; // Length of interval
|
|
uint64_t longran; // Random bits * interval
|
|
uint32_t iran; // Longran / 2^32
|
|
|
|
interval = (uint32_t)(max - min + 1);
|
|
longran = (uint64_t)BRandom() * interval;
|
|
iran = (uint32_t)(longran >> 32);
|
|
// Convert back to signed and return result
|
|
return iran + min;
|
|
}
|
|
|
|
double Random() // Output random floating point number
|
|
{
|
|
// Output random floating point number
|
|
if (ix >= SFMT_N*4-1) {
|
|
// Make sure we have at least two 32-bit numbers
|
|
Generate();
|
|
}
|
|
uint64_t r = *(uint64_t*)((uint32_t*)state+ix);
|
|
ix += 2;
|
|
// 52 bits resolution for compatibility with assembly version:
|
|
return (int64_t)(r >> 12) * (1./(67108864.0*67108864.0));
|
|
}
|
|
|
|
uint32_t BRandom() // Output random bits
|
|
{
|
|
// Output 32 random bits
|
|
uint32_t y;
|
|
|
|
if (ix >= SFMT_N*4) {
|
|
Generate();
|
|
}
|
|
y = ((uint32_t*)state)[ix++];
|
|
return y;
|
|
}
|
|
private:
|
|
void Init2() // Various initializations and period certification
|
|
{
|
|
// Various initializations and period certification
|
|
uint32_t i, j, temp;
|
|
|
|
// Initialize mask
|
|
static const uint32_t maskinit[4] = {SFMT_MASK};
|
|
mask = _mm_loadu_si128((__m128i*)maskinit);
|
|
|
|
// Period certification
|
|
// Define period certification vector
|
|
static const uint32_t parityvec[4] = {SFMT_PARITY};
|
|
|
|
// Check if parityvec & state[0] has odd parity
|
|
temp = 0;
|
|
for (i = 0; i < 4; i++)
|
|
temp ^= parityvec[i] & ((uint32_t*)state)[i];
|
|
|
|
for (i = 16; i > 0; i >>= 1) temp ^= temp >> i;
|
|
if (!(temp & 1)) {
|
|
// parity is even. Certification failed
|
|
// Find a nonzero bit in period certification vector
|
|
for (i = 0; i < 4; i++) {
|
|
if (parityvec[i]) {
|
|
for (j = 1; j; j <<= 1) {
|
|
if (parityvec[i] & j) {
|
|
// Flip the corresponding bit in state[0] to change parity
|
|
((uint32_t*)state)[i] ^= j;
|
|
// Done. Exit i and j loops
|
|
i = 5; break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate first random numbers and set ix = 0
|
|
Generate();
|
|
}
|
|
|
|
void Generate() // Fill state array with new random numbers
|
|
{
|
|
// Fill state array with new random numbers
|
|
int i;
|
|
__m128i r, r1, r2;
|
|
|
|
r1 = state[SFMT_N - 2];
|
|
r2 = state[SFMT_N - 1];
|
|
for (i = 0; i < SFMT_N - SFMT_M; i++) {
|
|
r = sfmt_recursion(state[i], state[i + SFMT_M], r1, r2, mask);
|
|
state[i] = r;
|
|
r1 = r2;
|
|
r2 = r;
|
|
}
|
|
for (; i < SFMT_N; i++) {
|
|
r = sfmt_recursion(state[i], state[i + SFMT_M - SFMT_N], r1, r2, mask);
|
|
state[i] = r;
|
|
r1 = r2;
|
|
r2 = r;
|
|
}
|
|
ix = 0;
|
|
}
|
|
|
|
void* operator new(size_t size, std::nothrow_t const&)
|
|
{
|
|
return _mm_malloc(size, 16);
|
|
}
|
|
|
|
void operator delete(void* ptr, std::nothrow_t const&)
|
|
{
|
|
_mm_free(ptr);
|
|
}
|
|
|
|
void* operator new(size_t size)
|
|
{
|
|
return _mm_malloc(size, 16);
|
|
}
|
|
|
|
void operator delete(void* ptr)
|
|
{
|
|
_mm_free(ptr);
|
|
}
|
|
|
|
void* operator new[](size_t size, std::nothrow_t const&)
|
|
{
|
|
return _mm_malloc(size, 16);
|
|
}
|
|
|
|
void operator delete[](void* ptr, std::nothrow_t const&)
|
|
{
|
|
_mm_free(ptr);
|
|
}
|
|
|
|
void* operator new[](size_t size)
|
|
{
|
|
return _mm_malloc(size, 16);
|
|
}
|
|
|
|
void operator delete[](void* ptr)
|
|
{
|
|
_mm_free(ptr);
|
|
}
|
|
|
|
__m128i mask; // AND mask
|
|
__m128i state[SFMT_N]; // State vector for SFMT generator
|
|
uint32_t ix; // Index into state array
|
|
uint32_t LastInterval; // Last interval length for IRandom
|
|
uint32_t RLimit; // Rejection limit used by IRandom
|
|
};
|
|
|
|
#endif // SFMT_H
|