mxw_wotlk_azerothcore/deps/g3dlite/source/GCamera.cpp

512 lines
15 KiB
C++

/**
@file GCamera.cpp
@author Morgan McGuire, http://graphics.cs.williams.edu
@author Jeff Marsceill, 08jcm@williams.edu
@created 2005-07-20
@edited 2010-02-22
*/
#include "G3D/GCamera.h"
#include "G3D/platform.h"
#include "G3D/Rect2D.h"
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
#include "G3D/Ray.h"
#include "G3D/Matrix4.h"
#include "G3D/Any.h"
#include "G3D/stringutils.h"
namespace G3D {
GCamera::GCamera(const Any& any) {
any.verifyName("GCamera");
any.verifyType(Any::TABLE);
*this = GCamera();
const Any::AnyTable& table = any.table();
Any::AnyTable::Iterator it = table.begin();
while (it.hasMore()) {
const std::string& k = toUpper(it->key);
if (k == "FOVDIRECTION") {
const std::string& v = toUpper(it->value);
if (v == "HORIZONTAL") {
m_direction = HORIZONTAL;
} else if (v == "VERTICAL") {
m_direction = VERTICAL;
} else {
any.verify(false, "fovDirection must be \"HORIZONTAL\" or \"VERTICAL\"");
}
} else if (k == "COORDINATEFRAME") {
m_cframe = it->value;
} else if (k == "FOVDEGREES") {
m_fieldOfView = toRadians(it->value.number());
} else if (k == "NEARPLANEZ") {
m_nearPlaneZ = it->value;
} else if (k == "FARPLANEZ") {
m_farPlaneZ = it->value;
} else if (k == "PIXELOFFSET") {
m_pixelOffset = it->value;
} else {
any.verify(false, std::string("Illegal key in table: ") + it->key);
}
++it;
}
}
GCamera::operator Any() const {
Any any(Any::TABLE, "GCamera");
any.set("fovDirection", std::string((m_direction == HORIZONTAL) ? "HORIZONTAL" : "VERTICAL"));
any.set("fovDegrees", toDegrees(m_fieldOfView));
any.set("nearPlaneZ", nearPlaneZ());
any.set("farPlaneZ", farPlaneZ());
any.set("coordinateFrame", coordinateFrame());
any.set("pixelOffset", pixelOffset());
return any;
}
GCamera::GCamera() {
setNearPlaneZ(-0.2f);
setFarPlaneZ(-150.0f);
setFieldOfView((float)toRadians(90.0f), HORIZONTAL);
}
GCamera::GCamera(const Matrix4& proj, const CFrame& frame) {
float left, right, bottom, top, nearval, farval;
proj.getPerspectiveProjectionParameters(left, right, bottom, top, nearval, farval);
setNearPlaneZ(-nearval);
setFarPlaneZ(-farval);
float x = right;
// Assume horizontal field of view
setFieldOfView(atan2(x, -m_nearPlaneZ) * 2.0f, HORIZONTAL);
setCoordinateFrame(frame);
}
GCamera::~GCamera() {
}
void GCamera::getCoordinateFrame(CoordinateFrame& c) const {
c = m_cframe;
}
void GCamera::setCoordinateFrame(const CoordinateFrame& c) {
m_cframe = c;
}
void GCamera::setFieldOfView(float angle, FOVDirection dir) {
debugAssert((angle < pi()) && (angle > 0));
m_fieldOfView = angle;
m_direction = dir;
}
float GCamera::imagePlaneDepth() const{
return -m_nearPlaneZ;
}
float GCamera::viewportWidth(const Rect2D& viewport) const {
// Compute the side of a square at the near plane based on our field of view
float s = 2.0f * -m_nearPlaneZ * tan(m_fieldOfView * 0.5f);
if (m_direction == VERTICAL) {
s *= viewport.width() / viewport.height();
}
return s;
}
float GCamera::viewportHeight(const Rect2D& viewport) const {
// Compute the side of a square at the near plane based on our field of view
float s = 2.0f * -m_nearPlaneZ * tan(m_fieldOfView * 0.5f);
debugAssert(m_fieldOfView < toRadians(180));
if (m_direction == HORIZONTAL) {
s *= viewport.height() / viewport.width();
}
return s;
}
Ray GCamera::worldRay(float x, float y, const Rect2D& viewport) const {
int screenWidth = iFloor(viewport.width());
int screenHeight = iFloor(viewport.height());
Vector3 origin = m_cframe.translation;
float cx = screenWidth / 2.0f;
float cy = screenHeight / 2.0f;
float vw = viewportWidth(viewport);
float vh = viewportHeight(viewport);
Vector3 direction = Vector3( (x - cx) * vw / screenWidth,
-(y - cy) * vh / screenHeight,
m_nearPlaneZ);
direction = m_cframe.vectorToWorldSpace(direction);
// Normalize the direction (we didn't do it before)
direction = direction.direction();
return Ray::fromOriginAndDirection(origin, direction);
}
void GCamera::getProjectPixelMatrix(const Rect2D& viewport, Matrix4& P) const {
getProjectUnitMatrix(viewport, P);
float screenWidth = viewport.width();
float screenHeight = viewport.height();
float sx = screenWidth / 2.0;
float sy = screenHeight / 2.0;
P = Matrix4(sx, 0, 0, sx + viewport.x0() - m_pixelOffset.x,
0, -sy, 0, sy + viewport.y0() + m_pixelOffset.y,
0, 0, 1, 0,
0, 0, 0, 1) * P;
}
void GCamera::getProjectUnitMatrix(const Rect2D& viewport, Matrix4& P) const {
float screenWidth = viewport.width();
float screenHeight = viewport.height();
float r, l, t, b, n, f, x, y;
float s = 1.0f;
if (m_direction == VERTICAL) {
y = -m_nearPlaneZ * tan(m_fieldOfView / 2);
x = y * (screenWidth / screenHeight);
s = screenHeight;
} else { //m_direction == HORIZONTAL
x = -m_nearPlaneZ * tan(m_fieldOfView / 2);
y = x * (screenHeight / screenWidth);
s = screenWidth;
}
n = -m_nearPlaneZ;
f = -m_farPlaneZ;
r = x - m_pixelOffset.x/s;
l = -x - m_pixelOffset.x/s;
t = y + m_pixelOffset.y/s;
b = -y + m_pixelOffset.y/s;
P = Matrix4::perspectiveProjection(l, r, b, t, n, f);
}
Vector3 GCamera::projectUnit(const Vector3& point, const Rect2D& viewport) const {
Matrix4 M;
getProjectUnitMatrix(viewport, M);
Vector4 cameraSpacePoint(coordinateFrame().pointToObjectSpace(point), 1.0f);
const Vector4& screenSpacePoint = M * cameraSpacePoint;
return Vector3(screenSpacePoint.xyz() / screenSpacePoint.w);
}
Vector3 GCamera::project(const Vector3& point,
const Rect2D& viewport) const {
// Find the point in the homogeneous cube
const Vector3& cube = projectUnit(point, viewport);
return convertFromUnitToNormal(cube, viewport);
}
Vector3 GCamera::unprojectUnit(const Vector3& v, const Rect2D& viewport) const {
const Vector3& projectedPoint = convertFromUnitToNormal(v, viewport);
return unproject(projectedPoint, viewport);
}
Vector3 GCamera::unproject(const Vector3& v, const Rect2D& viewport) const {
const float n = m_nearPlaneZ;
const float f = m_farPlaneZ;
float z;
if (-f >= finf()) {
// Infinite far plane
z = 1.0f / (((-1.0f / n) * v.z) + 1.0f / n);
} else {
z = 1.0f / ((((1.0f / f) - (1.0f / n)) * v.z) + 1.0f / n);
}
const Ray& ray = worldRay(v.x - m_pixelOffset.x, v.y - m_pixelOffset.y, viewport);
// Find out where the ray reaches the specified depth.
const Vector3& out = ray.origin() + ray.direction() * -z / (ray.direction().dot(m_cframe.lookVector()));
return out;
}
float GCamera::worldToScreenSpaceArea(float area, float z, const Rect2D& viewport) const {
(void)viewport;
if (z >= 0) {
return finf();
}
return area * (float)square(imagePlaneDepth() / z);
}
void GCamera::getClipPlanes(
const Rect2D& viewport,
Array<Plane>& clip) const {
Frustum fr;
frustum(viewport, fr);
clip.resize(fr.faceArray.size(), DONT_SHRINK_UNDERLYING_ARRAY);
for (int f = 0; f < clip.size(); ++f) {
clip[f] = fr.faceArray[f].plane;
}
}
GCamera::Frustum GCamera::frustum(const Rect2D& viewport) const {
Frustum f;
frustum(viewport, f);
return f;
}
void GCamera::frustum(const Rect2D& viewport, Frustum& fr) const {
// The volume is the convex hull of the vertices definining the view
// frustum and the light source point at infinity.
const float x = viewportWidth(viewport) / 2;
const float y = viewportHeight(viewport) / 2;
const float zn = m_nearPlaneZ;
const float zf = m_farPlaneZ;
float xx, zz, yy;
float halfFOV = m_fieldOfView * 0.5f;
// This computes the normal, which is based on the complement of the
// halfFOV angle, so the equations are "backwards"
if (m_direction == VERTICAL) {
yy = -cosf(halfFOV);
xx = yy * viewport.height() / viewport.width();
zz = -sinf(halfFOV);
} else {
xx = -cosf(halfFOV);
yy = xx * viewport.width() / viewport.height();
zz = -sinf(halfFOV);
}
// Near face (ccw from UR)
fr.vertexPos.append(
Vector4( x, y, zn, 1),
Vector4(-x, y, zn, 1),
Vector4(-x, -y, zn, 1),
Vector4( x, -y, zn, 1));
// Far face (ccw from UR, from origin)
if (m_farPlaneZ == -finf()) {
fr.vertexPos.append(Vector4( x, y, zn, 0),
Vector4(-x, y, zn, 0),
Vector4(-x, -y, zn, 0),
Vector4( x, -y, zn, 0));
} else {
// Finite
const float s = zf / zn;
fr.vertexPos.append(Vector4( x * s, y * s, zf, 1),
Vector4(-x * s, y * s, zf, 1),
Vector4(-x * s, -y * s, zf, 1),
Vector4( x * s, -y * s, zf, 1));
}
Frustum::Face face;
// Near plane (wind backwards so normal faces into frustum)
// Recall that nearPlane, farPlane are positive numbers, so
// we need to negate them to produce actual z values.
face.plane = Plane(Vector3(0,0,-1), Vector3(0,0,m_nearPlaneZ));
face.vertexIndex[0] = 3;
face.vertexIndex[1] = 2;
face.vertexIndex[2] = 1;
face.vertexIndex[3] = 0;
fr.faceArray.append(face);
// Right plane
face.plane = Plane(Vector3(xx, 0, zz), Vector3::zero());
face.vertexIndex[0] = 0;
face.vertexIndex[1] = 4;
face.vertexIndex[2] = 7;
face.vertexIndex[3] = 3;
fr.faceArray.append(face);
// Left plane
face.plane = Plane(Vector3(-fr.faceArray.last().plane.normal().x, 0, fr.faceArray.last().plane.normal().z), Vector3::zero());
face.vertexIndex[0] = 5;
face.vertexIndex[1] = 1;
face.vertexIndex[2] = 2;
face.vertexIndex[3] = 6;
fr.faceArray.append(face);
// Top plane
face.plane = Plane(Vector3(0, yy, zz), Vector3::zero());
face.vertexIndex[0] = 1;
face.vertexIndex[1] = 5;
face.vertexIndex[2] = 4;
face.vertexIndex[3] = 0;
fr.faceArray.append(face);
// Bottom plane
face.plane = Plane(Vector3(0, -fr.faceArray.last().plane.normal().y, fr.faceArray.last().plane.normal().z), Vector3::zero());
face.vertexIndex[0] = 2;
face.vertexIndex[1] = 3;
face.vertexIndex[2] = 7;
face.vertexIndex[3] = 6;
fr.faceArray.append(face);
// Far plane
if (-m_farPlaneZ < finf()) {
face.plane = Plane(Vector3(0, 0, 1), Vector3(0, 0, m_farPlaneZ));
face.vertexIndex[0] = 4;
face.vertexIndex[1] = 5;
face.vertexIndex[2] = 6;
face.vertexIndex[3] = 7;
fr.faceArray.append(face);
}
// Transform vertices to world space
for (int v = 0; v < fr.vertexPos.size(); ++v) {
fr.vertexPos[v] = m_cframe.toWorldSpace(fr.vertexPos[v]);
}
// Transform planes to world space
for (int p = 0; p < fr.faceArray.size(); ++p) {
// Since there is no scale factor, we don't have to
// worry about the inverse transpose of the normal.
Vector3 normal;
float d;
fr.faceArray[p].plane.getEquation(normal, d);
Vector3 newNormal = m_cframe.rotation * normal;
if (isFinite(d)) {
d = (newNormal * -d + m_cframe.translation).dot(newNormal);
fr.faceArray[p].plane = Plane(newNormal, newNormal * d);
} else {
// When d is infinite, we can't multiply 0's by it without
// generating NaNs.
fr.faceArray[p].plane = Plane::fromEquation(newNormal.x, newNormal.y, newNormal.z, d);
}
}
}
void GCamera::getNearViewportCorners
(const Rect2D& viewport,
Vector3& outUR,
Vector3& outUL,
Vector3& outLL,
Vector3& outLR) const {
// Must be kept in sync with getFrustum()
const float w = viewportWidth(viewport) / 2.0f;
const float h = viewportHeight(viewport) / 2.0f;
const float z = nearPlaneZ();
// Compute the points
outUR = Vector3( w, h, z);
outUL = Vector3(-w, h, z);
outLL = Vector3(-w, -h, z);
outLR = Vector3( w, -h, z);
// Take to world space
outUR = m_cframe.pointToWorldSpace(outUR);
outUL = m_cframe.pointToWorldSpace(outUL);
outLR = m_cframe.pointToWorldSpace(outLR);
outLL = m_cframe.pointToWorldSpace(outLL);
}
void GCamera::getFarViewportCorners(
const Rect2D& viewport,
Vector3& outUR,
Vector3& outUL,
Vector3& outLL,
Vector3& outLR) const {
// Must be kept in sync with getFrustum()
const float w = viewportWidth(viewport) * m_farPlaneZ / m_nearPlaneZ;
const float h = viewportHeight(viewport) * m_farPlaneZ / m_nearPlaneZ;
const float z = m_farPlaneZ;
// Compute the points
outUR = Vector3( w/2, h/2, z);
outUL = Vector3(-w/2, h/2, z);
outLL = Vector3(-w/2, -h/2, z);
outLR = Vector3( w/2, -h/2, z);
// Take to world space
outUR = m_cframe.pointToWorldSpace(outUR);
outUL = m_cframe.pointToWorldSpace(outUL);
outLR = m_cframe.pointToWorldSpace(outLR);
outLL = m_cframe.pointToWorldSpace(outLL);
}
void GCamera::setPosition(const Vector3& t) {
m_cframe.translation = t;
}
void GCamera::lookAt(const Vector3& position, const Vector3& up) {
m_cframe.lookAt(position, up);
}
void GCamera::serialize(BinaryOutput& bo) const {
bo.writeFloat32(m_fieldOfView);
bo.writeFloat32(imagePlaneDepth());
debugAssert(nearPlaneZ() < 0.0f);
bo.writeFloat32(nearPlaneZ());
debugAssert(farPlaneZ() < 0.0f);
bo.writeFloat32(farPlaneZ());
m_cframe.serialize(bo);
bo.writeInt8(m_direction);
m_pixelOffset.serialize(bo);
}
void GCamera::deserialize(BinaryInput& bi) {
m_fieldOfView = bi.readFloat32();
m_nearPlaneZ = bi.readFloat32();
debugAssert(m_nearPlaneZ < 0.0f);
m_farPlaneZ = bi.readFloat32();
debugAssert(m_farPlaneZ < 0.0f);
m_cframe.deserialize(bi);
m_direction = (FOVDirection)bi.readInt8();
m_pixelOffset.deserialize(bi);
}
Vector3 GCamera::convertFromUnitToNormal(const Vector3& in, const Rect2D& viewport) const{
return (in + Vector3(1,1,1)) * 0.5 * Vector3(viewport.width(), -viewport.height(), 1) +
Vector3(viewport.x0(), viewport.y1(), 0);
}
} // namespace