473 lines
13 KiB
C
473 lines
13 KiB
C
|
/**
|
||
|
\file Rect2D.h
|
||
|
|
||
|
\maintainer Morgan McGuire, http://graphics.cs.williams.edu
|
||
|
|
||
|
\created 2003-11-13
|
||
|
\created 2011-06-16
|
||
|
|
||
|
Copyright 2000-2012, Morgan McGuire.
|
||
|
All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#ifndef G3D_Rect2D_h
|
||
|
#define G3D_Rect2D_h
|
||
|
|
||
|
// Linux defines this as a macro
|
||
|
#ifdef border
|
||
|
#undef border
|
||
|
#endif
|
||
|
|
||
|
#include "G3D/platform.h"
|
||
|
#include "G3D/Array.h"
|
||
|
#include "G3D/Vector2.h"
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
// Turn off "conditional expression is constant" warning; MSVC generates this
|
||
|
// for debug assertions in inlined methods.
|
||
|
# pragma warning (disable : 4127)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
namespace G3D {
|
||
|
|
||
|
class Any;
|
||
|
|
||
|
/**
|
||
|
If you are using this class for pixel rectangles, keep in mind that the last
|
||
|
pixel you can draw to is at x0() + width() - 1.
|
||
|
*/
|
||
|
class Rect2D {
|
||
|
private:
|
||
|
Point2 min, max;
|
||
|
|
||
|
/**
|
||
|
Returns true if the whole polygon is clipped.
|
||
|
@param p Value of the point
|
||
|
@param axis Index [0 or 1] of the axis to clip along?
|
||
|
@param clipGreater Are we clipping greater than or less than the line?
|
||
|
@param inPoly Polygon being clipped
|
||
|
@param outPoly The clipped polygon
|
||
|
*/
|
||
|
template<class T>
|
||
|
static bool clipSide2D(
|
||
|
const float p, bool clipGreater, int axis,
|
||
|
const Array<T>& inPoly, Array<T>& outPoly) {
|
||
|
|
||
|
outPoly.clear();
|
||
|
int i0 = -1;
|
||
|
|
||
|
Vector2 pt1;
|
||
|
bool c1 = true;
|
||
|
|
||
|
float negate = clipGreater ? -1 : 1;
|
||
|
|
||
|
// Find a point that is not clipped
|
||
|
for (i0 = 0; (i0 < inPoly.length()) && c1; ++i0) {
|
||
|
pt1 = inPoly[i0];
|
||
|
c1 = (negate * pt1[axis]) < (negate * p);
|
||
|
}
|
||
|
|
||
|
// We incremented i0 one time to many
|
||
|
--i0;
|
||
|
|
||
|
if (c1) {
|
||
|
// We could not find an unclipped point
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
outPoly.append(pt1);
|
||
|
|
||
|
// for each point in inPoly,
|
||
|
// if the point is outside the side and the previous one was also outside, continue
|
||
|
// if the point is outside the side and the previous one was inside, cut the line
|
||
|
// if the point is inside the side and the previous one was also inside, append the points
|
||
|
// if the point is inside the side and the previous one was outside, cut the line
|
||
|
for (int i = 1; i <= inPoly.length(); ++i) {
|
||
|
T pt2 = inPoly[(i + i0) % inPoly.length()];
|
||
|
bool c2 = (negate * pt2[axis]) < (negate * p);
|
||
|
|
||
|
if (c1 ^ c2) {
|
||
|
|
||
|
if (!c1 && c2 && (i > 1)) {
|
||
|
// Unclipped to clipped trasition and not the first iteration
|
||
|
outPoly.append(pt1);
|
||
|
}
|
||
|
|
||
|
// only one point is clipped, find where the line crosses the clipping plane
|
||
|
|
||
|
|
||
|
float alpha;
|
||
|
if (pt2[axis] == pt1[axis]) {
|
||
|
alpha = 0;
|
||
|
} else {
|
||
|
alpha = (p - pt1[axis]) / (pt2[axis] - pt1[axis]);
|
||
|
}
|
||
|
outPoly.append(pt1.lerp(pt2, alpha));
|
||
|
} else if (! (c1 || c2) && (i != 1)) {
|
||
|
// neither point is clipped (don't do this the first time
|
||
|
// because we appended the first pt before the loop)
|
||
|
outPoly.append(pt1);
|
||
|
}
|
||
|
|
||
|
pt1 = pt2;
|
||
|
c1 = c2;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/** Uninitialized constructor */
|
||
|
Rect2D(bool b) {}
|
||
|
public:
|
||
|
|
||
|
/** \param any Must either Rect2D::xywh(#, #, #, #) or Rect2D::xyxy(#, #, #, #)*/
|
||
|
Rect2D(const Any& any);
|
||
|
|
||
|
/** Converts the Rect2D to an Any. */
|
||
|
Any toAny() const;
|
||
|
|
||
|
Rect2D(const Rect2D& r) : min(r.min), max(r.max) {}
|
||
|
|
||
|
/** Creates the empty set rectangle.
|
||
|
*/
|
||
|
Rect2D() : min(fnan(), fnan()), max(fnan(), fnan()) {}
|
||
|
|
||
|
static const Rect2D& empty();
|
||
|
|
||
|
/** Returns true if this is the empty set, which is distinct from a zero-area rectangle. */
|
||
|
inline bool isEmpty() const {
|
||
|
return min.isNaN() && max.isNaN();
|
||
|
}
|
||
|
|
||
|
/** Creates a rectangle at 0,0 with the given width and height*/
|
||
|
Rect2D(const Vector2& wh) : min(0, 0), max(wh.x, wh.y) {}
|
||
|
|
||
|
Vector2 extent() const {
|
||
|
if (isEmpty()) {
|
||
|
return Vector2::zero();
|
||
|
} else {
|
||
|
return max - min;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** @brief Uniformly random point on the interior */
|
||
|
Point2 randomPoint() const {
|
||
|
return Point2(uniformRandom(0, max.x - min.x) + min.x,
|
||
|
uniformRandom(0, max.y - min.y) + min.y);
|
||
|
}
|
||
|
|
||
|
float width() const {
|
||
|
if (isEmpty()) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
return max.x - min.x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float height() const {
|
||
|
if (isEmpty()) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
return max.y - min.y;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float x0() const {
|
||
|
return min.x;
|
||
|
}
|
||
|
|
||
|
float x1() const {
|
||
|
return max.x;
|
||
|
}
|
||
|
|
||
|
float y0() const {
|
||
|
return min.y;
|
||
|
}
|
||
|
|
||
|
float y1() const {
|
||
|
return max.y;
|
||
|
}
|
||
|
|
||
|
/** Min, min corner */
|
||
|
Point2 x0y0() const {
|
||
|
return min;
|
||
|
}
|
||
|
|
||
|
Point2 x1y0() const {
|
||
|
return Point2(max.x, min.y);
|
||
|
}
|
||
|
|
||
|
Point2 x0y1() const {
|
||
|
return Point2(min.x, max.y);
|
||
|
}
|
||
|
|
||
|
/** Max,max corner */
|
||
|
Point2 x1y1() const {
|
||
|
return max;
|
||
|
}
|
||
|
|
||
|
/** Width and height */
|
||
|
Vector2 wh() const {
|
||
|
if (isEmpty()) {
|
||
|
return Vector2::zero();
|
||
|
} else {
|
||
|
return max - min;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Point2 center() const {
|
||
|
return (max + min) * 0.5;
|
||
|
}
|
||
|
|
||
|
float area() const {
|
||
|
return width() * height();
|
||
|
}
|
||
|
|
||
|
bool isFinite() const {
|
||
|
return (min.isFinite() && max.isFinite());
|
||
|
}
|
||
|
|
||
|
Rect2D lerp(const Rect2D& other, float alpha) const {
|
||
|
Rect2D out(false);
|
||
|
|
||
|
out.min = min.lerp(other.min, alpha);
|
||
|
out.max = max.lerp(other.max, alpha);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
static Rect2D xyxy(float x0, float y0, float x1, float y1) {
|
||
|
Rect2D r(false);
|
||
|
|
||
|
r.min.x = G3D::min(x0, x1);
|
||
|
r.min.y = G3D::min(y0, y1);
|
||
|
r.max.x = G3D::max(x0, x1);
|
||
|
r.max.y = G3D::max(y0, y1);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static Rect2D xyxy(const Point2& v0, const Point2& v1) {
|
||
|
Rect2D r(false);
|
||
|
|
||
|
r.min = v0.min(v1);
|
||
|
r.max = v0.max(v1);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static Rect2D xywh(float x, float y, float w, float h) {
|
||
|
return xyxy(x, y, x + w, y + h);
|
||
|
}
|
||
|
|
||
|
static Rect2D xywh(const Point2& v, const Vector2& w) {
|
||
|
return xyxy(v.x, v.y, v.x + w.x, v.y + w.y);
|
||
|
}
|
||
|
|
||
|
/** Constructs a Rect2D with infinite boundaries.
|
||
|
Use isFinite() to test either min or max.
|
||
|
*/
|
||
|
static Rect2D inf() {
|
||
|
return xyxy(Vector2::inf(), Vector2::inf());
|
||
|
}
|
||
|
|
||
|
bool contains(const Point2& v) const {
|
||
|
// This will automatically return false if isEmpty()
|
||
|
return (v.x >= min.x) && (v.y >= min.y) && (v.x <= max.x) && (v.y <= max.y);
|
||
|
}
|
||
|
|
||
|
bool contains(const Rect2D& r) const {
|
||
|
// This will automatically return false if isEmpty()
|
||
|
return (min.x <= r.min.x) && (min.y <= r.min.y) &&
|
||
|
(max.x >= r.max.x) && (max.y >= r.max.y);
|
||
|
}
|
||
|
|
||
|
/** True if there is non-zero area to the intersection between @a this and @a r.
|
||
|
Note that two rectangles that are adjacent do not intersect because there is
|
||
|
zero area to the overlap, even though one of them "contains" the corners of the other.*/
|
||
|
bool intersects(const Rect2D& r) const {
|
||
|
// This will automatically return false if isEmpty()
|
||
|
return (min.x < r.max.x) && (min.y < r.max.y) &&
|
||
|
(max.x > r.min.x) && (max.y > r.min.y);
|
||
|
}
|
||
|
|
||
|
/** Like intersection, but counts the adjacent case as touching. */
|
||
|
bool intersectsOrTouches(const Rect2D& r) const {
|
||
|
// This will automatically return false if isEmpty()
|
||
|
return (min.x <= r.max.x) && (min.y <= r.max.y) &&
|
||
|
(max.x >= r.min.x) && (max.y >= r.min.y);
|
||
|
}
|
||
|
|
||
|
Rect2D operator*(float s) const {
|
||
|
return xyxy(min.x * s, min.y * s, max.x * s, max.y * s);
|
||
|
}
|
||
|
|
||
|
Rect2D operator*(const Vector2& s) const {
|
||
|
return xyxy(min * s, max * s);
|
||
|
}
|
||
|
|
||
|
Rect2D operator/(float s) const {
|
||
|
return xyxy(min / s, max / s);
|
||
|
}
|
||
|
|
||
|
Rect2D operator/(const Vector2& s) const {
|
||
|
return xyxy(min / s, max / s);
|
||
|
}
|
||
|
|
||
|
Rect2D operator+(const Vector2& v) const {
|
||
|
return xyxy(min + v, max + v);
|
||
|
}
|
||
|
|
||
|
Rect2D operator-(const Vector2& v) const {
|
||
|
return xyxy(min - v, max - v);
|
||
|
}
|
||
|
|
||
|
bool operator==(const Rect2D& other) const {
|
||
|
return (min == other.min) && (max == other.max);
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Rect2D& other) const {
|
||
|
return (min != other.min) || (max != other.max);
|
||
|
}
|
||
|
|
||
|
void serialize(class BinaryOutput& b) const;
|
||
|
|
||
|
void deserialize(class BinaryInput& b);
|
||
|
|
||
|
/** Returns the corners in the order: (min,min), (max,min), (max,max), (min,max). */
|
||
|
Point2 corner(int i) const {
|
||
|
debugAssert(i >= 0 && i < 4);
|
||
|
switch (i & 3) {
|
||
|
case 0:
|
||
|
return Point2(min.x, min.y);
|
||
|
case 1:
|
||
|
return Point2(max.x, min.y);
|
||
|
case 2:
|
||
|
return Point2(max.x, max.y);
|
||
|
case 3:
|
||
|
return Point2(min.x, max.y);
|
||
|
default:
|
||
|
// Should never get here
|
||
|
return Point2(0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @deprecated
|
||
|
@sa expand() */
|
||
|
Rect2D border(float delta) const {
|
||
|
return Rect2D::xywh(x0() + delta,
|
||
|
y0() + delta,
|
||
|
width() - 2.0f * delta,
|
||
|
height() - 2.0f * delta);
|
||
|
}
|
||
|
|
||
|
/** Returns a new Rect2D that is bigger/smaller by the specified amount
|
||
|
(negative is shrink.) */
|
||
|
Rect2D expand(float delta) const {
|
||
|
float newX = x0() - delta;
|
||
|
float newY = y0() - delta;
|
||
|
float newW = width() + 2.0f * delta;
|
||
|
float newH = height() + 2.0f * delta;
|
||
|
|
||
|
if (newW < 0.0f) {
|
||
|
newX = (x0() + width()) / 2.0f;
|
||
|
newW = 0.0f;
|
||
|
}
|
||
|
|
||
|
if (newH < 0.0f) {
|
||
|
newY = (y0() + height()) / 2.0f;
|
||
|
newH = 0.0f;
|
||
|
}
|
||
|
return Rect2D::xywh(newX, newY, newW, newH);
|
||
|
}
|
||
|
|
||
|
void merge(const Rect2D& other) {
|
||
|
if (isEmpty()) {
|
||
|
*this = other;
|
||
|
} else if (! other.isEmpty()) {
|
||
|
min = min.min(other.min);
|
||
|
max = max.max(other.max);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Computes a rectangle that contains both @a a and @a b.
|
||
|
Note that even if @a or @b has zero area, its origin will be included.*/
|
||
|
Rect2D(const Rect2D& a, const Rect2D& b) {
|
||
|
*this = a;
|
||
|
merge(b);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Clips so that the rightmost point of the outPoly is at rect.x1 (e.g. a 800x600 window produces
|
||
|
rightmost point 799, not 800). The results are suitable for pixel rendering if iRounded.
|
||
|
Templated so that it will work for Vector2,3,4 (the z and w components are interpolated linearly).
|
||
|
The template parameter must define T.lerp and contain x and y components.
|
||
|
|
||
|
If the entire polygon is clipped by a single side, the result will be empty.
|
||
|
The result might also have zero area but not be empty.
|
||
|
*/
|
||
|
template<class T>
|
||
|
void clip(const Array<T>& inPoly, Array<T>& outPoly) const {
|
||
|
|
||
|
const bool greaterThan = true;
|
||
|
const bool lessThan = false;
|
||
|
const int X = 0;
|
||
|
const int Y = 1;
|
||
|
|
||
|
Array<T> temp;
|
||
|
|
||
|
bool entirelyClipped =
|
||
|
clipSide2D(x0(), lessThan, X, inPoly, temp) ||
|
||
|
clipSide2D(x1(), greaterThan, X, temp, outPoly) ||
|
||
|
clipSide2D(y0(), lessThan, Y, outPoly, temp) ||
|
||
|
clipSide2D(y1(), greaterThan, Y, temp, outPoly);
|
||
|
|
||
|
if (entirelyClipped) {
|
||
|
outPoly.clear();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/** Returns the largest, centered Rect2D that can fit inside this
|
||
|
while maintaining the aspect ratio of x:y. Convenient for
|
||
|
displaying images in odd-shaped windows.
|
||
|
*/
|
||
|
Rect2D largestCenteredSubRect(float ww, float hh) const {
|
||
|
float textureAspect = hh / ww;
|
||
|
float viewAspect = height() / width();
|
||
|
|
||
|
if (viewAspect > textureAspect) {
|
||
|
// The view is too tall
|
||
|
float h = width() * textureAspect;
|
||
|
float y = (height() - h) / 2;
|
||
|
return Rect2D::xywh(0, y, width(), h) + corner(0);
|
||
|
} else {
|
||
|
// The view is too wide
|
||
|
float w = height() / textureAspect;
|
||
|
float x = (width() - w) / 2;
|
||
|
return Rect2D::xywh(x, 0, w, height()) + corner(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Returns the overlap region between the two rectangles. This may
|
||
|
have zero area if they do not intersect. See the two-Rect2D
|
||
|
constructor and merge() for a way to compute a union-like
|
||
|
rectangle.
|
||
|
*/
|
||
|
Rect2D intersect(const Rect2D& other) const {
|
||
|
if (intersects(other)) {
|
||
|
return Rect2D::xyxy(min.max(other.min), max.min(other.max));
|
||
|
} else {
|
||
|
return empty();
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
typedef Rect2D AABox2D;
|
||
|
}
|
||
|
|
||
|
#endif
|