mxwcore-legion/dep/g3dlite/include/G3D/PointKDTree.h

1189 lines
38 KiB
C
Raw Normal View History

2023-11-05 15:26:19 -05:00
/**
@file PointKDTree.h
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@created 2004-01-11
@edited 2012-07-30
Copyright 2000-2012, Morgan McGuire.
All rights reserved.
*/
#ifndef G3D_PointKDTree_h
#define G3D_PointKDTree_h
#include "G3D/platform.h"
#include "G3D/Array.h"
#include "G3D/Table.h"
#include "G3D/Vector2.h"
#include "G3D/Vector3.h"
#include "G3D/Vector4.h"
#include "G3D/AABox.h"
#include "G3D/Sphere.h"
#include "G3D/Box.h"
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
#include "G3D/CollisionDetection.h"
#include "G3D/Frustum.h"
#include "G3D/PositionTrait.h"
#include <algorithm>
namespace G3D {
/**
A set data structure that supports spatial queries using an axis-aligned
BSP tree for speed.
PointKDTree allows you to quickly find points in 3D that lie within
a box or sphere. For large sets of objects it is much faster
than testing each object for a collision. See also G3D::KDTree; this class
is optimized for point sets, e.g.,for use in photon mapping and mesh processing.
<B>Template Parameters</B>
<br>
<br>The template parameter <I>T</I> must be one for which
the following functions are overloaded:
<pre>
T::T(); <I>(public constructor of no arguments)</I>
template<> struct PositionTrait<class T> {
static void getPosition(const T& v, G3D::Vector3& p);};
template <> struct HashTrait<class T> {
static size_t hashCode(const T& key);};
template<> struct EqualsTrait<class T> {
static bool equals(const T& a, const T& b); };
</pre>
<p>
G3D provides these for the Vector2, Vector3, and Vector4 classes.
If you use a custom class, or a pointer to a custom class, you will need
to define those functions.
<B>Moving %Set Members</B>
<DT>It is important that objects do not move without updating the
PointKDTree. If the position of an object is about
to change, PointKDTree::remove it before they change and
PointKDTree::insert it again afterward. For objects
where the hashCode and == operator are invariant with respect
to the 3D position,
you can use the PointKDTree::update method as a shortcut to
insert/remove an object in one step after it has moved.
Note: Do not mutate any value once it has been inserted into PointKDTree. Values
are copied interally. All PointKDTree iterators convert to pointers to constant
values to reinforce this.
If you want to mutate the objects you intend to store in a PointKDTree
simply insert <I>pointers</I> to your objects instead of the objects
themselves, and ensure that the above operations are defined. (And
actually, because values are copied, if your values are large you may
want to insert pointers anyway, to save space and make the balance
operation faster.)
<B>Dimensions</B>
Although designed as a 3D-data structure, you can use the PointKDTree
for data distributed along 2 or 1 axes by simply returning bounds
that are always zero along one or more dimensions.
*/
template<class T,
class PositionFunc = PositionTrait<T>,
class HashFunc = HashTrait<T>,
class EqualsFunc = EqualsTrait<T> >
class PointKDTree {
protected:
#define TreeType PointKDTree<T, PositionFunc, HashFunc, EqualsFunc>
// Unlike the KDTree, the PointKDTree assumes that T elements are
// small and keeps the handle and cached position together instead of
// placing them in separate bounds arrays. Also note that a copy of T
// is kept in the member table and that there is no indirection.
class Handle {
private:
Vector3 m_position;
public:
T value;
inline Handle() {}
inline Handle(const T& v) : value(v) {
PositionFunc::getPosition(v, m_position);
}
/** Used by makeNode to create fake handles for partitioning. */
void setPosition(const Vector3& v) {
m_position = v;
}
inline const Vector3& position() const {
return m_position;
}
};
/** Returns the bounds of the sub array. Used by makeNode. */
static AABox computeBounds(
const Array<Handle>& point) {
if (point.size() == 0) {
return AABox(Vector3::inf(), Vector3::inf());
}
AABox bounds(point[0].position());
for (int p = 0; p < point.size(); ++p) {
bounds.merge(point[p].position());
}
return bounds;
}
class Node {
public:
/** Spatial bounds on all values at this node and its children, based purely on
the parent's splitting planes. May be infinite */
AABox splitBounds;
Vector3::Axis splitAxis;
/** Location along the specified axis */
float splitLocation;
/** child[0] contains all values strictly
smaller than splitLocation along splitAxis.
child[1] contains all values strictly
larger.
Both may be NULL if there are not enough
values to bother recursing.
*/
Node* child[2];
/** Values if this is a leaf node). */
Array<Handle> valueArray;
/** Creates node with NULL children */
Node() {
splitAxis = Vector3::X_AXIS;
splitLocation = 0;
splitBounds = AABox(-Vector3::inf(), Vector3::inf());
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
}
/**
Doesn't clone children.
*/
Node(const Node& other) : valueArray(other.valueArray) {
splitAxis = other.splitAxis;
splitLocation = other.splitLocation;
splitBounds = other.splitBounds;
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
}
/** Copies the specified subarray of pt into point, NULLs the children.
Assumes a second pass will set splitBounds. */
Node(const Array<Handle>& pt) {
splitAxis = Vector3::X_AXIS;
splitLocation = 0;
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
valueArray = pt;
}
/** Deletes the children (but not the values) */
~Node() {
for (int i = 0; i < 2; ++i) {
delete child[i];
}
}
/** Returns true if this node is a leaf (no children) */
inline bool isLeaf() const {
return (child[0] == NULL) && (child[1] == NULL);
}
/**
Recursively appends all handles and children's handles
to the array.
*/
void getHandles(Array<Handle>& handleArray) const {
handleArray.append(valueArray);
for (int i = 0; i < 2; ++i) {
if (child[i] != NULL) {
child[i]->getHandles(handleArray);
}
}
}
void verifyNode(const Vector3& lo, const Vector3& hi) {
// debugPrintf("Verifying: split %d @ %f [%f, %f, %f], [%f, %f, %f]\n",
// splitAxis, splitLocation, lo.x, lo.y, lo.z, hi.x, hi.y, hi.z);
debugAssert(lo == splitBounds.low());
debugAssert(hi == splitBounds.high());
# ifdef G3D_DEBUG
for (int i = 0; i < valueArray.length(); ++i) {
const Vector3& b = valueArray[i].position();
debugAssert(splitBounds.contains(b));
}
# endif
if (child[0] || child[1]) {
debugAssert(lo[splitAxis] < splitLocation);
debugAssert(hi[splitAxis] > splitLocation);
}
Vector3 newLo = lo;
newLo[splitAxis] = splitLocation;
Vector3 newHi = hi;
newHi[splitAxis] = splitLocation;
if (child[0] != NULL) {
child[0]->verifyNode(lo, newHi);
}
if (child[1] != NULL) {
child[1]->verifyNode(newLo, hi);
}
}
/**
Stores the locations of the splitting planes (the structure but not the content)
so that the tree can be quickly rebuilt from a previous configuration without
calling balance.
*/
static void serializeStructure(const Node* n, BinaryOutput& bo) {
if (n == NULL) {
bo.writeUInt8(0);
} else {
bo.writeUInt8(1);
n->splitBounds.serialize(bo);
serialize(n->splitAxis, bo);
bo.writeFloat32(n->splitLocation);
for (int c = 0; c < 2; ++c) {
serializeStructure(n->child[c], bo);
}
}
}
/** Clears the member table */
static Node* deserializeStructure(BinaryInput& bi) {
if (bi.readUInt8() == 0) {
return NULL;
} else {
Node* n = new Node();
n->splitBounds.deserialize(bi);
deserialize(n->splitAxis, bi);
n->splitLocation = bi.readFloat32();
for (int c = 0; c < 2; ++c) {
n->child[c] = deserializeStructure(bi);
}
return n;
}
}
/** Returns the deepest node that completely contains bounds. */
Node* findDeepestContainingNode(const Vector3& point) {
// See which side of the splitting plane the bounds are on
if (point[splitAxis] < splitLocation) {
// Point is on the low side. Recurse into the child
// if it exists.
if (child[0] != NULL) {
return child[0]->findDeepestContainingNode(point);
}
} else if (point[splitAxis] > splitLocation) {
// Point is on the high side, recurse into the child
// if it exists.
if (child[1] != NULL) {
return child[1]->findDeepestContainingNode(point);
}
}
// There was no containing child, so this node is the
// deepest containing node.
return this;
}
/** Appends all members that intersect the box.
If useSphere is true, members are tested against the sphere instead. */
void getIntersectingMembers(
const AABox& sphereBounds,
const Sphere& sphere,
Array<T>& members) const {
// Test all values at this node. Extract the
// underlying C array for speed
const int N = valueArray.size();
const Handle* handleArray = valueArray.getCArray();
const float r2 = square(sphere.radius);
// Copy the sphere center so that it is on the stack near the radius
const Vector3 center = sphere.center;
for (int v = 0; v < N; ++v) {
if ((center - handleArray[v].position()).squaredLength() <= r2) {
members.append(handleArray[v].value);
}
}
// If the left child overlaps the box, recurse into it
if (child[0] && (sphereBounds.low()[splitAxis] < splitLocation)) {
child[0]->getIntersectingMembers(sphereBounds, sphere, members);
}
// If the right child overlaps the box, recurse into it
if (child[1] && (sphereBounds.high()[splitAxis] > splitLocation)) {
child[1]->getIntersectingMembers(sphereBounds, sphere, members);
}
}
/** Appends all members that intersect the box.
If useSphere is true, members are tested against the sphere instead.
Implemented using both box and sphere tests to simplify the implementation
of a future beginSphereInteresection iterator using the same underlying
BoxIterator class.
*/
void getIntersectingMembers(
const AABox& box,
const Sphere& sphere,
Array<T>& members,
bool useSphere) const {
// Test all values at this node
for (int v = 0; v < valueArray.size(); ++v) {
if ((useSphere && sphere.contains(valueArray[v].position())) ||
(! useSphere && box.contains(valueArray[v].position()))) {
members.append(valueArray[v].value);
}
}
// If the left child overlaps the box, recurse into it
if ((child[0] != NULL) && (box.low()[splitAxis] < splitLocation)) {
child[0]->getIntersectingMembers(box, sphere, members, useSphere);
}
// If the right child overlaps the box, recurse into it
if ((child[1] != NULL) && (box.high()[splitAxis] > splitLocation)) {
child[1]->getIntersectingMembers(box, sphere, members, useSphere);
}
}
/**
Recurse through the tree, assigning splitBounds fields.
*/
void assignSplitBounds(const AABox& myBounds) {
splitBounds = myBounds;
# ifdef G3D_DEBUG
if (child[0] || child[1]) {
debugAssert(splitBounds.high()[splitAxis] > splitLocation);
debugAssert(splitBounds.low()[splitAxis] < splitLocation);
}
# endif
AABox childBounds[2];
myBounds.split(splitAxis, splitLocation, childBounds[0], childBounds[1]);
for (int c = 0; c < 2; ++c) {
if (child[c]) {
child[c]->assignSplitBounds(childBounds[c]);
}
}
}
};
class AxisComparator {
private:
Vector3::Axis sortAxis;
public:
AxisComparator(Vector3::Axis s) : sortAxis(s) {}
inline int operator()(const Handle& A, const Handle& B) const {
if (A.position()[sortAxis] > B.position()[sortAxis]) {
return -1;
} else if (A.position()[sortAxis] < B.position()[sortAxis]) {
return 1;
} else {
return 0;
}
}
};
/**
Recursively subdivides the subarray.
The source array will be cleared after it is used
Call assignSplitBounds() on the root node after making a tree.
*/
Node* makeNode(
Array<Handle>& source,
Array<Handle>& temp,
int valuesPerNode,
int numMeanSplits) {
Node* node = NULL;
if (source.size() <= valuesPerNode) {
// Make a new leaf node
node = new Node(source);
// Set the pointers in the memberTable
for (int i = 0; i < source.size(); ++i) {
memberTable.set(source[i].value, node);
}
} else {
// Make a new internal node
node = new Node();
const AABox bounds = computeBounds(source);
const Vector3 extent = bounds.high() - bounds.low();
Vector3::Axis splitAxis = extent.primaryAxis();
float splitLocation;
Array<Handle> lt, gt;
if (numMeanSplits <= 0) {
source.medianPartition(lt, node->valueArray, gt, temp, AxisComparator(splitAxis));
splitLocation = node->valueArray[0].position()[splitAxis];
if ((node->valueArray.size() > source.size() / 2) &&
(source.size() > 10)) {
// Our median split put an awful lot of points on the splitting plane. Try a mean
// split instead
numMeanSplits = 1;
}
}
if (numMeanSplits > 0) {
// Compute the mean along the axis
splitLocation = (bounds.high()[splitAxis] +
bounds.low()[splitAxis]) / 2.0f;
Handle splitHandle;
Vector3 v;
v[splitAxis] = splitLocation;
splitHandle.setPosition(v);
source.partition(splitHandle, lt, node->valueArray, gt, AxisComparator(splitAxis));
}
# if defined(G3D_DEBUG) && defined(VERIFY_TREE)
for (int i = 0; i < lt.size(); ++i) {
const Vector3& v = lt[i].position();
debugAssert(v[splitAxis] < splitLocation);
}
for (int i = 0; i < gt.size(); ++i) {
debugAssert(gt[i].position()[splitAxis] > splitLocation);
}
for (int i = 0; i < node->valueArray.size(); ++i) {
debugAssert(node->valueArray[i].position()[splitAxis] == splitLocation);
}
# endif
node->splitAxis = splitAxis;
node->splitLocation = splitLocation;
// Throw away the source array to save memory
source.fastClear();
if (lt.size() > 0) {
node->child[0] = makeNode(lt, temp, valuesPerNode, numMeanSplits - 1);
}
if (gt.size() > 0) {
node->child[1] = makeNode(gt, temp, valuesPerNode, numMeanSplits - 1);
}
// Add the values stored at this interior node to the member table
for(int i = 0; i < node->valueArray.size(); ++i) {
memberTable.set(node->valueArray[i].value, node);
}
}
return node;
}
/**
Recursively clone the passed in node tree, setting
pointers for members in the memberTable as appropriate.
called by the assignment operator.
*/
Node* cloneTree(Node* src) {
Node* dst = new Node(*src);
// Make back pointers
for (int i = 0; i < dst->valueArray.size(); ++i) {
memberTable.set(dst->valueArray[i].value, dst);
}
// Clone children
for (int i = 0; i < 2; ++i) {
if (src->child[i] != NULL) {
dst->child[i] = cloneTree(src->child[i]);
}
}
return dst;
}
/** Maps members to the node containing them */
typedef Table<T, Node*, HashFunc, EqualsFunc> MemberTable;
MemberTable memberTable;
Node* root;
public:
/** To construct a balanced tree, insert the elements and then call
PointKDTree::balance(). */
PointKDTree() : root(NULL) {}
PointKDTree(const PointKDTree& src) : root(NULL) {
*this = src;
}
PointKDTree& operator=(const PointKDTree& src) {
delete root;
// Clone tree takes care of filling out the memberTable.
root = cloneTree(src.root);
return *this;
}
~PointKDTree() {
clear();
}
/**
Throws out all elements of the set and erases the structure of the tree.
*/
void clear() {
memberTable.clear();
delete root;
root = NULL;
}
/** Removes all elements of the set while maintaining the structure of the tree */
void clearData() {
memberTable.clear();
Array<Node*> stack;
stack.push(root);
while (stack.size() > 0) {
Node* node = stack.pop();
node->valueArray.fastClear();
for (int i = 0; i < 2; ++i) {
if (node->child[i] != NULL) {
stack.push(node->child[i]);
}
}
}
}
size_t size() const {
return memberTable.size();
}
/**
Inserts an object into the set if it is not
already present. O(log n) time. Does not
cause the tree to be balanced.
*/
void insert(const T& value) {
if (contains(value)) {
// Already in the set
return;
}
Handle h(value);
if (root == NULL) {
// This is the first node; create a root node
root = new Node();
}
Node* node = root->findDeepestContainingNode(h.position());
// Insert into the node
node->valueArray.append(h);
// Insert into the node table
memberTable.set(value, node);
}
/** Inserts each elements in the array in turn. If the tree
begins empty (no structure and no elements), this is faster
than inserting each element in turn. You still need to balance
the tree at the end.*/
void insert(const Array<T>& valueArray) {
// Pre-size the member table to avoid multiple allocations
memberTable.setSizeHint(valueArray.size() + size());
if (root == NULL) {
// Optimized case for an empty tree; don't bother
// searching or reallocating the root node's valueArray
// as we incrementally insert.
root = new Node();
root->valueArray.resize(valueArray.size());
for (int i = 0; i < valueArray.size(); ++i) {
// Insert in opposite order so that we have the exact same
// data structure as if we inserted each (i.e., order is reversed
// from array).
root->valueArray[valueArray.size() - i - 1] = Handle(valueArray[i]);
memberTable.set(valueArray[i], root);
}
} else {
// Insert at appropriate tree depth.
for (int i = 0; i < valueArray.size(); ++i) {
insert(valueArray[i]);
}
}
}
/**
Returns true if this object is in the set, otherwise
returns false. O(1) time.
*/
bool contains(const T& value) {
return memberTable.containsKey(value);
}
/**
Removes an object from the set in O(1) time.
It is an error to remove members that are not already
present. May unbalance the tree.
Removing an element never causes a node (split plane) to be removed...
nodes are only changed when the tree is rebalanced. This behavior
is desirable because it allows the split planes to be serialized,
and then deserialized into an empty tree which can be repopulated.
*/
void remove(const T& value) {
debugAssertM(contains(value),
"Tried to remove an element from a "
"PointKDTree that was not present");
Array<Handle>& list = memberTable[value]->valueArray;
// Find the element and remove it
for (int i = list.length() - 1; i >= 0; --i) {
if (list[i].value == value) {
list.fastRemove(i);
break;
}
}
memberTable.remove(value);
}
/**
If the element is in the set, it is removed.
The element is then inserted.
This is useful when the == and hashCode methods
on <I>T</I> are independent of the bounds. In
that case, you may call update(v) to insert an
element for the first time and call update(v)
again every time it moves to keep the tree
up to date.
*/
void update(const T& value) {
if (contains(value)) {
remove(value);
}
insert(value);
}
/**
Rebalances the tree (slow). Call when objects
have moved substantially from their original positions
(which unbalances the tree and causes the spatial
queries to be slow).
@param valuesPerNode Maximum number of elements to put at
a node.
@param numMeanSplits numMeanSplits = 0 gives a
fully axis aligned BSP-tree, where the balance operation attempts to balance
the tree so that every splitting plane has an equal number of left
and right children (i.e. it is a <B>median</B> split along that axis).
This tends to maximize average performance; all querries will return in the same amount of time.
You can override this behavior by
setting a number of <B>mean</B> (average) splits. numMeanSplits = MAX_INT
creates a full oct-tree, which tends to optimize peak performance (some areas of the scene will terminate after few recursive splits) at the expense of
peak performance.
*/
void balance(int valuesPerNode = 40, int numMeanSplits = 3) {
if (root == NULL) {
// Tree is empty
return;
}
Array<Handle> handleArray;
root->getHandles(handleArray);
// Delete the old tree
clear();
Array<Handle> temp;
root = makeNode(handleArray, temp, valuesPerNode, numMeanSplits);
temp.fastClear();
// Walk the tree, assigning splitBounds. We start with unbounded
// space.
root->assignSplitBounds(AABox::maxFinite());
# ifdef _DEBUG
root->verifyNode(Vector3::minFinite(), Vector3::maxFinite());
# endif
}
private:
/**
Returns the elements
@param parentMask The mask that this node returned from culledBy.
*/
static void getIntersectingMembers(
const Array<Plane>& plane,
Array<T>& members,
Node* node,
uint32 parentMask) {
int dummy;
if (parentMask == 0) {
// None of these planes can cull anything
for (int v = node->valueArray.size() - 1; v >= 0; --v) {
members.append(node->valueArray[v].value);
}
// Iterate through child nodes
for (int c = 0; c < 2; ++c) {
if (node->child[c]) {
getIntersectingMembers(plane, members, node->child[c], 0);
}
}
} else {
if (node->valueArray.size() > 0) {
// This is a leaf; check the points
debugAssertM(node->child[0] == NULL, "Malformed Point tree");
debugAssertM(node->child[1] == NULL, "Malformed Point tree");
// Test values at this node against remaining planes
for (int p = 0; p < plane.size(); ++p) {
if (((parentMask >> p) & 1) != 0) {
// Test against this plane
const Plane& curPlane = plane[p];
for (int v = node->valueArray.size() - 1; v >= 0; --v) {
if (curPlane.halfSpaceContains(node->valueArray[v].position())) {
members.append(node->valueArray[v].value);
}
}
}
}
} else {
uint32 childMask = 0xFFFFFF;
// Iterate through child nodes
for (int c = 0; c < 2; ++c) {
if (node->child[c] &&
! node->child[c]->splitBounds.culledBy(plane, dummy, parentMask, childMask)) {
// This node was not culled
getIntersectingMembers(plane, members, node->child[c], childMask);
}
}
}
}
}
public:
/**
Returns all members inside the set of planes.
@param members The results are appended to this array.
*/
void getIntersectingMembers(const Array<Plane>& plane, Array<T>& members) const {
if (root == NULL) {
return;
}
getIntersectingMembers(plane, members, root, 0xFFFFFF);
}
/**
Typically used to find all visible
objects inside the view frustum (see also Camera::getClipPlanes)... i.e. all objects
<B>not</B> culled by frustum.
Example:
<PRE>
Array<Object*> visible;
tree.getIntersectingMembers(camera.frustum(), visible);
// ... Draw all objects in the visible array.
</PRE>
@param members The results are appended to this array.
*/
void getIntersectingMembers(const Frustum& frustum, Array<T>& members) const {
Array<Plane> plane;
for (int i = 0; i < frustum.faceArray.size(); ++i) {
plane.append(frustum.faceArray[i].plane);
}
getIntersectingMembers(plane, members);
}
/**
C++ STL style iterator variable. See beginBoxIntersection().
The iterator overloads the -> (dereference) operator, so this
acts like a pointer to the current member.
*/
// This iterator turns Node::getIntersectingMembers into a
// coroutine. It first translates that method from recursive to
// stack based, then captures the system state (analogous to a Scheme
// continuation) after each element is appended to the member array,
// and allowing the computation to be restarted.
class BoxIntersectionIterator {
private:
friend class TreeType;
/** True if this is the "end" iterator instance */
bool isEnd;
/** The box that we're testing against. */
AABox box;
/** Node that we're currently looking at. Undefined if isEnd
is true. */
Node* node;
/** Nodes waiting to be processed */
// We could use backpointers within the tree and careful
// state management to avoid ever storing the stack-- but
// it is much easier this way and only inefficient if the
// caller uses post increment (which they shouldn't!).
Array<Node*> stack;
/** The next index of current->valueArray to return.
Undefined when isEnd is true.*/
int nextValueArrayIndex;
BoxIntersectionIterator() : isEnd(true) {}
BoxIntersectionIterator(const AABox& b, const Node* root) :
isEnd(root == NULL), box(b),
node(const_cast<Node*>(root)), nextValueArrayIndex(-1) {
// We intentionally start at the "-1" index of the current
// node so we can use the preincrement operator to move
// ourselves to element 0 instead of repeating all of the
// code from the preincrement method. Note that this might
// cause us to become the "end" instance.
++(*this);
}
public:
inline bool operator!=(const BoxIntersectionIterator& other) const {
return ! (*this == other);
}
bool operator==(const BoxIntersectionIterator& other) const {
if (isEnd) {
return other.isEnd;
} else if (other.isEnd) {
return false;
} else {
// Two non-end iterators; see if they match. This is kind of
// silly; users shouldn't call == on iterators in general unless
// one of them is the end iterator.
if ((box != other.box) || (node != other.node) ||
(nextValueArrayIndex != other.nextValueArrayIndex) ||
(stack.length() != other.stack.length())) {
return false;
}
// See if the stacks are the same
for (int i = 0; i < stack.length(); ++i) {
if (stack[i] != other.stack[i]) {
return false;
}
}
// We failed to find a difference; they must be the same
return true;
}
}
/**
Pre increment.
*/
BoxIntersectionIterator& operator++() {
++nextValueArrayIndex;
bool foundIntersection = false;
while (! isEnd && ! foundIntersection) {
// Search for the next node if we've exhausted this one
while ((! isEnd) && (nextValueArrayIndex >= node->valueArray.length())) {
// If we entered this loop, then the iterator has exhausted the elements at
// node (possibly because it just switched to a child node with no members).
// This loop continues until it finds a node with members or reaches
// the end of the whole intersection search.
// If the right child overlaps the box, push it onto the stack for
// processing.
if ((node->child[1] != NULL) &&
(box.high()[node->splitAxis] > node->splitLocation)) {
stack.push(node->child[1]);
}
// If the left child overlaps the box, push it onto the stack for
// processing.
if ((node->child[0] != NULL) &&
(box.low()[node->splitAxis] < node->splitLocation)) {
stack.push(node->child[0]);
}
if (stack.length() > 0) {
// Go on to the next node (which may be either one of the ones we
// just pushed, or one from farther back the tree).
node = stack.pop();
nextValueArrayIndex = 0;
} else {
// That was the last node; we're done iterating
isEnd = true;
}
}
// Search for the next intersection at this node until we run out of children
while (! isEnd && ! foundIntersection && (nextValueArrayIndex < node->valueArray.length())) {
if (box.intersects(node->valueArray[nextValueArrayIndex].bounds)) {
foundIntersection = true;
} else {
++nextValueArrayIndex;
// If we exhaust this node, we'll loop around the master loop
// to find a new node.
}
}
}
return *this;
}
/**
Post increment (much slower than preincrement!).
*/
BoxIntersectionIterator operator++(int) {
BoxIntersectionIterator old = *this;
++this;
return old;
}
/** Overloaded dereference operator so the iterator can masquerade as a pointer
to a member */
const T& operator*() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return node->valueArray[nextValueArrayIndex].value;
}
/** Overloaded dereference operator so the iterator can masquerade as a pointer
to a member */
T const * operator->() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return &(stack.last()->valueArray[nextValueArrayIndex].value);
}
/** Overloaded cast operator so the iterator can masquerade as a pointer
to a member */
operator T*() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return &(stack.last()->valueArray[nextValueArrayIndex].value);
}
};
/**
Iterates through the members that intersect the box
*/
BoxIntersectionIterator beginBoxIntersection(const AABox& box) const {
return BoxIntersectionIterator(box, root);
}
BoxIntersectionIterator endBoxIntersection() const {
// The "end" iterator instance
return BoxIntersectionIterator();
}
/**
Appends all members whose bounds intersect the box.
See also PointKDTree::beginBoxIntersection.
*/
void getIntersectingMembers(const AABox& box, Array<T>& members) const {
if (root == NULL) {
return;
}
root->getIntersectingMembers(box, Sphere(Vector3::zero(), 0), members, false);
}
/**
@param members The results are appended to this array.
*/
void getIntersectingMembers(const Sphere& sphere, Array<T>& members) const {
if (root == NULL) {
return;
}
AABox box;
sphere.getBounds(box);
root->getIntersectingMembers(box, sphere, members);
}
/**
Stores the locations of the splitting planes (the structure but not the content)
so that the tree can be quickly rebuilt from a previous configuration without
calling balance.
*/
void serializeStructure(BinaryOutput& bo) const {
Node::serializeStructure(root, bo);
}
/** Clears the member table */
void deserializeStructure(BinaryInput& bi) {
clear();
root = Node::deserializeStructure(bi);
}
/**
Returns an array of all members of the set. See also PointKDTree::begin.
*/
void getMembers(Array<T>& members) const {
memberTable.getKeys(members);
}
/**
C++ STL style iterator variable. See begin().
Overloads the -> (dereference) operator, so this acts like a pointer
to the current member.
*/
class Iterator {
private:
friend class TreeType;
// Note: this is a Table iterator, we are currently defining
// Set iterator
typename MemberTable::Iterator it;
Iterator(const typename MemberTable::Iterator& it) : it(it) {}
public:
inline bool operator!=(const Iterator& other) const {
return !(*this == other);
}
bool operator==(const Iterator& other) const {
return it == other.it;
}
/**
Pre increment.
*/
Iterator& operator++() {
++it;
return *this;
}
/**
Post increment (slower than preincrement).
*/
Iterator operator++(int) {
Iterator old = *this;
++(*this);
return old;
}
const T& operator*() const {
return it->key;
}
T* operator->() const {
return &(it->key);
}
operator T*() const {
return &(it->key);
}
};
/**
C++ STL style iterator method. Returns the first member.
Use preincrement (++entry) to get to the next element (iteration
order is arbitrary).
Do not modify the set while iterating.
*/
Iterator begin() const {
return Iterator(memberTable.begin());
}
/**
C++ STL style iterator method. Returns one after the last iterator
element.
*/
Iterator end() const {
return Iterator(memberTable.end());
}
#undef TreeType
};
}
#endif