/* * Copyright notice * ================ * GNU General Public License http://www.gnu.org/licenses/gpl.html * This C++ implementation of SFMT contains parts of the original C code * which was published under the following BSD license, which is therefore * in effect in addition to the GNU General Public License. * Copyright (c) 2006, 2007 by Mutsuo Saito, Makoto Matsumoto and Hiroshima University. * Copyright (c) 2008 by Agner Fog. * Copyright (c) 2008-2013 Trinity Core * * BSD License: * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * > Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * > Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * > Neither the name of the Hiroshima University nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef SFMT_H #define SFMT_H #include // Define SSE2 intrinsics #include "randomc.h" // Define integer types etc #include #include // Choose one of the possible Mersenne exponents. // Higher values give longer cycle length and use more memory: //#define MEXP 607 //#define MEXP 1279 //#define MEXP 2281 //#define MEXP 4253 #define MEXP 11213 //#define MEXP 19937 //#define MEXP 44497 // Define constants for the selected Mersenne exponent: #if MEXP == 44497 #define SFMT_N 348 // Size of state vector #define SFMT_M 330 // Position of intermediate feedback #define SFMT_SL1 5 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 9 // Right shift of W[M], 32-bit words #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xeffffffb,0xdfbebfff,0xbfbf7bef,0x9ffd7bff // AND mask #define SFMT_PARITY 1,0,0xa3ac4000,0xecc1327a // Period certification vector #elif MEXP == 19937 #define SFMT_N 156 // Size of state vector #define SFMT_M 122 // Position of intermediate feedback #define SFMT_SL1 18 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 11 // Right shift of W[M], 32-bit words #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xdfffffef,0xddfecb7f,0xbffaffff,0xbffffff6 // AND mask #define SFMT_PARITY 1,0,0,0x13c9e684 // Period certification vector #elif MEXP == 11213 #define SFMT_N 88 // Size of state vector #define SFMT_M 68 // Position of intermediate feedback #define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 7 // Right shift of W[M], 32-bit words #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xeffff7fb,0xffffffef,0xdfdfbfff,0x7fffdbfd // AND mask #define SFMT_PARITY 1,0,0xe8148000,0xd0c7afa3 // Period certification vector #elif MEXP == 4253 #define SFMT_N 34 // Size of state vector #define SFMT_M 17 // Position of intermediate feedback #define SFMT_SL1 20 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 7 // Right shift of W[M], 32-bit words #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0x9f7bffff, 0x9fffff5f, 0x3efffffb, 0xfffff7bb // AND mask #define SFMT_PARITY 0xa8000001, 0xaf5390a3, 0xb740b3f8, 0x6c11486d // Period certification vector #elif MEXP == 2281 #define SFMT_N 18 // Size of state vector #define SFMT_M 12 // Position of intermediate feedback #define SFMT_SL1 19 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 5 // Right shift of W[M], 32-bit words #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xbff7ffbf, 0xfdfffffe, 0xf7ffef7f, 0xf2f7cbbf // AND mask #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x41dfa600 // Period certification vector #elif MEXP == 1279 #define SFMT_N 10 // Size of state vector #define SFMT_M 7 // Position of intermediate feedback #define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 5 // Right shift of W[M], 32-bit words #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xf7fefffd, 0x7fefcfff, 0xaff3ef3f, 0xb5ffff7f // AND mask #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x20000000 // Period certification vector #elif MEXP == 607 #define SFMT_N 5 // Size of state vector #define SFMT_M 2 // Position of intermediate feedback #define SFMT_SL1 15 // Left shift of W[N-1], 32-bit words #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words #define SFMT_SR1 13 // Right shift of W[M], 32-bit words #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words #define SFMT_MASK 0xfdff37ff, 0xef7f3f7d, 0xff777b7d, 0x7ff7fb2f // AND mask #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x5986f054 // Period certification vector #endif // Functions used by SFMTRand::RandomInitByArray (UNUSED AND COMMENTED OUT) /* static uint32_t func1(uint32_t x) { return (x ^ (x >> 27)) * 1664525U; } static uint32_t func2(uint32_t x) { return (x ^ (x >> 27)) * 1566083941U; } */ // Subfunction for the sfmt algorithm static inline __m128i sfmt_recursion(__m128i const &a, __m128i const &b, __m128i const &c, __m128i const &d, __m128i const &mask) { __m128i a1, b1, c1, d1, z1, z2; b1 = _mm_srli_epi32(b, SFMT_SR1); a1 = _mm_slli_si128(a, SFMT_SL2); c1 = _mm_srli_si128(c, SFMT_SR2); d1 = _mm_slli_epi32(d, SFMT_SL1); b1 = _mm_and_si128(b1, mask); z1 = _mm_xor_si128(a, a1); z2 = _mm_xor_si128(b1, d1); z1 = _mm_xor_si128(z1, c1); z2 = _mm_xor_si128(z1, z2); return z2; } namespace boost { template class thread_specific_ptr; } // Class for SFMT generator class SFMTRand { // Encapsulate random number generator friend class boost::thread_specific_ptr; public: SFMTRand() { LastInterval = 0; RandomInit((int)(time(0))); } void RandomInit(int seed) // Re-seed { // Re-seed uint32_t i; // Loop counter uint32_t y = seed; // Temporary uint32_t statesize = SFMT_N*4; // Size of state vector // Fill state vector with random numbers from seed uint32_t* s = (uint32_t*)&state; s[0] = y; const uint32_t factor = 1812433253U;// Multiplication factor for (i = 1; i < statesize; i++) { y = factor * (y ^ (y >> 30)) + i; ((uint32_t*)state)[i] = y; } // Further initialization and period certification Init2(); } int32_t IRandom(int32_t min, int32_t max) // Output random integer { // Output random integer in the interval min <= x <= max // Slightly inaccurate if (max-min+1) is not a power of 2 if (max <= min) { if (max == min) return min; else return 0x80000000; } // Assume 64 bit integers supported. Use multiply and shift method uint32_t interval; // Length of interval uint64_t longran; // Random bits * interval uint32_t iran; // Longran / 2^32 interval = (uint32_t)(max - min + 1); longran = (uint64_t)BRandom() * interval; iran = (uint32_t)(longran >> 32); // Convert back to signed and return result return (int32_t)iran + min; } uint32_t URandom(uint32_t min, uint32_t max) { // Output random integer in the interval min <= x <= max // Slightly inaccurate if (max-min+1) is not a power of 2 if (max <= min) { if (max == min) return min; else return 0; } // Assume 64 bit integers supported. Use multiply and shift method uint32_t interval; // Length of interval uint64_t longran; // Random bits * interval uint32_t iran; // Longran / 2^32 interval = (uint32_t)(max - min + 1); longran = (uint64_t)BRandom() * interval; iran = (uint32_t)(longran >> 32); // Convert back to signed and return result return iran + min; } double Random() // Output random floating point number { // Output random floating point number if (ix >= SFMT_N*4-1) { // Make sure we have at least two 32-bit numbers Generate(); } uint64_t r = *(uint64_t*)((uint32_t*)state+ix); ix += 2; // 52 bits resolution for compatibility with assembly version: return (int64_t)(r >> 12) * (1./(67108864.0*67108864.0)); } uint32_t BRandom() // Output random bits { // Output 32 random bits uint32_t y; if (ix >= SFMT_N*4) { Generate(); } y = ((uint32_t*)state)[ix++]; return y; } void* operator new(size_t size, std::nothrow_t const&) { return _mm_malloc(size, 16); } void operator delete(void* ptr, std::nothrow_t const&) { _mm_free(ptr); } void* operator new(size_t size) { return _mm_malloc(size, 16); } void operator delete(void* ptr) { _mm_free(ptr); } void* operator new[](size_t size, std::nothrow_t const&) { return _mm_malloc(size, 16); } void operator delete[](void* ptr, std::nothrow_t const&) { _mm_free(ptr); } void* operator new[](size_t size) { return _mm_malloc(size, 16); } void operator delete[](void* ptr) { _mm_free(ptr); } private: void Init2() // Various initializations and period certification { // Various initializations and period certification uint32_t i, j, temp; // Initialize mask static const uint32_t maskinit[4] = {SFMT_MASK}; mask = _mm_loadu_si128((__m128i*)maskinit); // Period certification // Define period certification vector static const uint32_t parityvec[4] = {SFMT_PARITY}; // Check if parityvec & state[0] has odd parity temp = 0; for (i = 0; i < 4; i++) temp ^= parityvec[i] & ((uint32_t*)state)[i]; for (i = 16; i > 0; i >>= 1) temp ^= temp >> i; if (!(temp & 1)) { // parity is even. Certification failed // Find a nonzero bit in period certification vector for (i = 0; i < 4; i++) { if (parityvec[i]) { for (j = 1; j; j <<= 1) { if (parityvec[i] & j) { // Flip the corresponding bit in state[0] to change parity ((uint32_t*)state)[i] ^= j; // Done. Exit i and j loops i = 5; break; } } } } } // Generate first random numbers and set ix = 0 Generate(); } void Generate() // Fill state array with new random numbers { // Fill state array with new random numbers int i; __m128i r, r1, r2; r1 = state[SFMT_N - 2]; r2 = state[SFMT_N - 1]; for (i = 0; i < SFMT_N - SFMT_M; i++) { r = sfmt_recursion(state[i], state[i + SFMT_M], r1, r2, mask); state[i] = r; r1 = r2; r2 = r; } for (; i < SFMT_N; i++) { r = sfmt_recursion(state[i], state[i + SFMT_M - SFMT_N], r1, r2, mask); state[i] = r; r1 = r2; r2 = r; } ix = 0; } __m128i mask; // AND mask __m128i state[SFMT_N]; // State vector for SFMT generator uint32_t ix; // Index into state array uint32_t LastInterval; // Last interval length for IRandom uint32_t RLimit; // Rejection limit used by IRandom }; #endif // SFMT_H