/** \file Welder.cpp \author Morgan McGuire, Kyle Whitson, Corey Taylor \created 2008-07-30 \edited 2011-07-04 */ #include "G3D/platform.h" #include "G3D/Vector2.h" #include "G3D/Vector3.h" #include "G3D/Sphere.h" #include "G3D/PointHashGrid.h" #include "G3D/Welder.h" #include "G3D/Stopwatch.h" // for profiling #include "G3D/AreaMemoryManager.h" #include "G3D/Any.h" #include "G3D/stringutils.h" #include "G3D/BinaryInput.h" #include "G3D/BinaryOutput.h" namespace G3D { namespace _internal{ // Uncomment to print information that can help with performance // profiling. //#define VERBOSE /** Used by WeldHelper2::smoothNormals. */ class VN { public: Vector3 vertex; Vector3 normal; VN() {} VN(const Vector3& v, const Vector3& n) : vertex(v), normal(n) {} }; /** Used by WeldHelper::getIndex to maintain a list of vertices by location. */ class VNTi { public: Vector3 vertex; Vector3 normal; Vector2 texCoord; int index; VNTi() : index(0) {} VNTi(const Vector3& v, const Vector3& n, const Vector2& t, int i) : vertex(v), normal(n), texCoord(t), index(i) {} }; }} // G3D template <> struct HashTrait { static size_t hashCode(const G3D::_internal::VN& k) { return static_cast(k.vertex.hashCode()); } }; template <> struct HashTrait { static size_t hashCode(const G3D::_internal::VNTi& k) { return static_cast(k.vertex.hashCode()); } }; template<> struct EqualsTrait { static bool equals(const G3D::_internal::VN& a, const G3D::_internal::VN& b) { return a.vertex == b.vertex; } }; template<> struct EqualsTrait { static bool equals(const G3D::_internal::VNTi& a, const G3D::_internal::VNTi& b) { return a.vertex == b.vertex; } }; template<> struct PositionTrait { static void getPosition(const G3D::_internal::VN& v, G3D::Vector3& p) { p = v.vertex; } }; template<> struct PositionTrait { static void getPosition(const G3D::_internal::VNTi& v, G3D::Vector3& p) { p = v.vertex; } }; namespace G3D { namespace _internal { class WeldHelper { private: /** Used by getIndex and updateTriLists. Deallocating this is slow. */ PointHashGrid weldGrid; Array* outputVertexArray; Array* outputNormalArray; Array* outputTexCoordArray; float vertexWeldRadius; /** Squared radius allowed for welding similar normals. */ float normalWeldRadius2; float texCoordWeldRadius2; float normalSmoothingAngle; /** Returns the index of the vertex in outputVertexArray/outputNormalArray/outputTexCoordArray that is within the global tolerances of v,n,t. If there is no such vertex, adds it to the arrays and returns that index. Called from updateTriLists(). */ int getIndex(const Vector3& v, const Vector3& n, const Vector2& t) { PointHashGrid::SphereIterator it = weldGrid.begin(Sphere(v, vertexWeldRadius)); if (n.isZero()) { // Don't bother trying to match the surface normal, since this vertex has no surface normal. while (it.isValid()) { if ((t - it->texCoord).squaredLength() <= texCoordWeldRadius2) { // This is the vertex return it->index; } ++it; } } else { while (it.isValid()) { if (((n - it->normal).squaredLength() <= normalWeldRadius2) && ((t - it->texCoord).squaredLength() <= texCoordWeldRadius2)) { // This is the vertex return it->index; } ++it; } } // Note that a sliver triangle processed before its neighbors may reach here // with a zero length normal. // The vertex does not exist. Create it. const int i = outputVertexArray->size(); outputVertexArray->append(v); outputNormalArray->append(n); outputTexCoordArray->append(t); // Store in the grid so that it will be remembered. weldGrid.insert(VNTi(v, n, t, i)); return i; } /** Updates each indexArray to refer to vertices in the outputVertexArray. Called from process() */ void updateTriLists (Array*>& indexArrayArray, const Array& vertexArray, const Array& normalArray, const Array& texCoordArray) { # ifdef VERBOSE debugPrintf("WeldHelper::updateTriLists\n"); # endif // Compute a hash grid so that we can find neighbors quickly. // It begins empty and is extended as the tri lists are iterated // through. weldGrid.clear(); // Process all triLists int numTriLists = indexArrayArray.size(); int u = 0; for (int t = 0; t < numTriLists; ++t) { if (indexArrayArray[t] != NULL) { Array& triList = *(indexArrayArray[t]); // For all vertices in this list for (int v = 0; v < triList.size(); ++v) { // This vertex mapped to u in the flatVertexArray triList[v] = getIndex(vertexArray[u], normalArray[u], texCoordArray[u]); /* # ifdef G3D_DEBUG { int i = triList[v]; Vector3 N = normalArray[i]; debugAssertM(N.length() > 0.9f, "Produced non-unit normal"); } # endif */ ++u; } } } } /** Expands the indexed triangle lists into a triangle list. Called from process() */ void unroll (const Array*>& indexArrayArray, const Array& vertexArray, const Array& texCoordArray, Array& unrolledVertexArray, Array& unrolledTexCoordArray) { # ifdef VERBOSE debugPrintf("WeldHelper::unroll\n"); # endif int numTriLists = indexArrayArray.size(); for (int t = 0; t < numTriLists; ++t) { if (indexArrayArray[t] != NULL) { const Array& triList = *(indexArrayArray[t]); for (int v = 0; v < triList.size(); ++v) { int i = triList[v]; unrolledVertexArray.append(vertexArray[i]); unrolledTexCoordArray.append(texCoordArray[i]); } } } } /** For every three vertices, compute the face normal and store it three times. Sliver triangles have a zero surface normal, which we will later take to match *any* surface normal. */ void computeFaceNormals (const Array& vertexArray, Array& faceNormalArray) { # ifdef VERBOSE debugPrintf("WeldHelper::computeFaceNormals\n"); # endif debugAssertM(vertexArray.size() % 3 == 0, "Input is not a triangle soup"); debugAssertM(faceNormalArray.size() == 0, "Output must start empty."); for (int v = 0; v < vertexArray.size(); v += 3) { const Vector3& e0 = vertexArray[v + 1] - vertexArray[v]; const Vector3& e1 = vertexArray[v + 2] - vertexArray[v]; // Note that the length may be zero in the case of sliver polygons, e.g., // those correcting a T-junction. Scale up by 256 to avoid underflow when // multiplying very small edges const Vector3& n = (e0.cross(e1 * 256.0f)).directionOrZero(); // Append the normal once per vertex. faceNormalArray.append(n, n, n); } } /** Computes @a smoothNormalArray, whose elements are those of normalArray averaged with neighbors within the angular cutoff. */ void smoothNormals (const Array& vertexArray, const Array& normalArray, Array& smoothNormalArray) { if (normalSmoothingAngle <= 0) { smoothNormalArray = normalArray; return; } # ifdef VERBOSE debugPrintf("WeldHelper::smoothNormals\n"); # endif // Create an area memory manager for fast deallocation MemoryManager::Ref mm = AreaMemoryManager::create(iRound(sizeof(VN) * normalArray.size() * 1.5)); const float cosThresholdAngle = (float)cos(normalSmoothingAngle); debugAssert(vertexArray.size() == normalArray.size()); smoothNormalArray.resize(normalArray.size()); if (vertexWeldRadius == 0) { // Look for vertices with the exactly identical normal only # ifdef VERBOSE debugPrintf("Taking fast path\n"); # endif // Maximum expected faces that meet at a vertex static const int k = 8; // Maps vertices to the indices of normals at that vertex Table > normalTable; for (int v = 0; v < vertexArray.size(); ++v) { bool ignore = false; SmallArray& list = normalTable.getCreate(vertexArray[v], ignore); list.append(normalArray[v]); } for (int v = 0; v < vertexArray.size(); ++v) { Vector3 sum; const Vector3& original = normalArray[v]; const SmallArray& list = normalTable[vertexArray[v]]; for (int i = 0; i < list.size(); ++i) { const Vector3& N = list[i]; const float cosAngle = N.dot(original); if (cosAngle > cosThresholdAngle) { // This normal is close enough to consider. Avoid underflow by scaling up sum += (N * 256.0f); } } const Vector3& average = sum.directionOrZero(); const bool indeterminate = average.isZero(); // Never "smooth" a normal so far that it points backwards const bool backFacing = original.dot(average) < 0; if (indeterminate || backFacing) { // Revert to the face normal smoothNormalArray[v] = original; } else { // Average available normals smoothNormalArray[v] = average; } } } else { // Non-zero vertex normal welding # ifdef VERBOSE debugPrintf("Taking slower weld path because vertexWeldRadius = %f\n", vertexWeldRadius); # endif // Compute a hash grid so that we can find neighbors quickly. alwaysAssertM(vertexWeldRadius > 0, "Cannot smooth with zero vertex weld radius"); PointHashGrid grid(vertexWeldRadius, mm); for (int v = 0; v < normalArray.size(); ++v) { grid.insert(VN(vertexArray[v], normalArray[v])); } // OPT: this step could be done on multiple threads for (int v = 0; v < normalArray.size(); ++v) { // Compute the sum of all nearby normals within the cutoff angle. // Search within the vertexWeldRadius, since those are the vertices // that will collapse to the same point. PointHashGrid::SphereIterator it = grid.begin(Sphere(vertexArray[v], vertexWeldRadius)); Vector3 sum; const Vector3& original = normalArray[v]; while (it.isValid()) { const Vector3& N = it->normal; const float cosAngle = N.dot(original); if (cosAngle > cosThresholdAngle) { // This normal is close enough to consider. Avoid underflow by scaling up sum += (N * 256.0f); } ++it; } const Vector3& average = sum.directionOrZero(); const bool indeterminate = average.isZero(); // Never "smooth" a normal so far that it points backwards const bool backFacing = original.dot(average) < 0; if (indeterminate || backFacing) { // Revert to the face normal smoothNormalArray[v] = original; } else { // Average available normals smoothNormalArray[v] = average; } } } } public: /** Algorithm: 1. Unroll the indexed triangle list into a triangle list, where there are duplicated vertices. 2. Compute face normals for all triangles, and expand those into the triangle vertices. 3. At each vertex, average all normals that are within normalSmoothingAngle. 4. Generate output indexArrayArray. While doing so, merge all vertices where the distance between position, texCoord, and normal is within the thresholds. */ void process ( Array& vertexArray, Array& texCoordArray, Array& normalArray, Array*>& indexArrayArray, float normAngle, float texRadius, float normRadius) { # ifdef VERBOSE debugPrintf("WeldHelper::process\n"); # endif normalSmoothingAngle = normAngle; normalWeldRadius2 = square(normRadius); texCoordWeldRadius2 = square(texRadius); const bool hasTexCoords = (texCoordArray.size() > 0); if (hasTexCoords) { debugAssertM(vertexArray.size() == texCoordArray.size(), "Input arrays are not parallel."); } // Create an area memory manager for fast deallocation Array unrolledVertexArray; Array unrolledFaceNormalArray; Array unrolledSmoothNormalArray; Array unrolledTexCoordArray; unrolledVertexArray.reserve(vertexArray.size()); unrolledFaceNormalArray.reserve(vertexArray.size()); unrolledSmoothNormalArray.reserve(vertexArray.size()); unrolledTexCoordArray.reserve(vertexArray.size()); if (! hasTexCoords) { // Generate all zero texture coordinates texCoordArray.resize(vertexArray.size()); } // Generate a flat (unrolled) triangle list with texture coordinates. unroll(indexArrayArray, vertexArray, texCoordArray, unrolledVertexArray, unrolledTexCoordArray); // Put the output back into the input slots. outputVertexArray = &vertexArray; outputNormalArray = &normalArray; outputTexCoordArray = &texCoordArray; outputVertexArray->fastClear(); outputNormalArray->fastClear(); outputTexCoordArray->fastClear(); // For every three vertices, generate their face normal and store it at // each vertex. The output array has the same length as the input. computeFaceNormals(unrolledVertexArray, unrolledFaceNormalArray); // Compute smooth normals at vertices. if (unrolledFaceNormalArray.size() > 0) { smoothNormals(unrolledVertexArray, unrolledFaceNormalArray, unrolledSmoothNormalArray); unrolledFaceNormalArray.clear(); } // Regenerate the triangle lists updateTriLists(indexArrayArray, unrolledVertexArray, unrolledSmoothNormalArray, unrolledTexCoordArray); if (! hasTexCoords) { // Throw away the generated texCoords texCoordArray.resize(0); } } WeldHelper(float vertRadius) : weldGrid(max(vertRadius, 0.1f), AreaMemoryManager::create()), vertexWeldRadius(vertRadius) { } }; } // Internal void Welder::Settings::serialize(class BinaryOutput& b) const { b.writeFloat32(normalSmoothingAngle); b.writeFloat32(vertexWeldRadius); b.writeFloat32(textureWeldRadius); b.writeFloat32(normalWeldRadius); } void Welder::Settings::deserialize(class BinaryInput& b) { normalSmoothingAngle = b.readFloat32(); vertexWeldRadius = b.readFloat32(); textureWeldRadius = b.readFloat32(); normalWeldRadius = b.readFloat32(); } void Welder::weld (Array& vertexArray, Array& texCoordArray, Array& normalArray, Array*>& indexArrayArray, const Welder::Settings& settings) { _internal::WeldHelper(settings.vertexWeldRadius).process (vertexArray, texCoordArray, normalArray, indexArrayArray, settings.normalSmoothingAngle, settings.textureWeldRadius, settings.normalWeldRadius); } Welder::Settings::Settings(const Any& any) { *this = Settings(); any.verifyName("Welder::Settings"); for (Any::AnyTable::Iterator it = any.table().begin(); it.isValid(); ++it) { const std::string& key = toLower(it->key); if (key == "normalsmoothingangle") { normalSmoothingAngle = it->value; } else if (key == "vertexweldradius") { vertexWeldRadius = it->value; } else if (key == "textureweldradius") { textureWeldRadius = it->value; } else if (key == "normalweldradius") { normalWeldRadius = it->value; } else { any.verify(false, "Illegal key: " + it->key); } } } Any Welder::Settings::toAny() const { Any a(Any::TABLE, "Welder::Settings"); a["normalSmoothingAngle"] = normalSmoothingAngle; a["vertexWeldRadius"] = vertexWeldRadius; a["textureWeldRadius"] = textureWeldRadius; a["normalWeldRadius"] = normalWeldRadius; return a; } } // G3D