mxwcore-legion/dep/g3dlite/source/LineSegment.cpp

237 lines
5.9 KiB
C++

/**
@file LineSegment.cpp
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@created 2003-02-08
@edited 2008-02-02
*/
#include "G3D/platform.h"
#include "G3D/LineSegment.h"
#include "G3D/Sphere.h"
#include "G3D/debug.h"
namespace G3D {
Vector3 LineSegment::closestPoint(const Vector3& p) const {
// The vector from the end of the capsule to the point in question.
Vector3 v(p - _point);
// Projection of v onto the line segment scaled by
// the length of direction.
float t = direction.dot(v);
// Avoid some square roots. Derivation:
// t/direction.length() <= direction.length()
// t <= direction.squaredLength()
if ((t >= 0) && (t <= direction.squaredMagnitude())) {
// The point falls within the segment. Normalize direction,
// divide t by the length of direction.
return _point + direction * t / direction.squaredMagnitude();
} else {
// The point does not fall within the segment; see which end is closer.
// Distance from 0, squared
float d0Squared = v.squaredMagnitude();
// Distance from 1, squared
float d1Squared = (v - direction).squaredMagnitude();
if (d0Squared < d1Squared) {
// Point 0 is closer
return _point;
} else {
// Point 1 is closer
return _point + direction;
}
}
}
Vector3 LineSegment::point(int i) const {
switch (i) {
case 0:
return _point;
case 1:
return _point + direction;
default:
debugAssertM(i == 0 || i == 1, "Argument to point must be 0 or 1");
return _point;
}
}
bool LineSegment::intersectsSolidSphere(const class Sphere& s) const {
return distanceSquared(s.center) <= square(s.radius);
}
LineSegment::LineSegment(class BinaryInput& b) {
deserialize(b);
}
void LineSegment::serialize(class BinaryOutput& b) const {
_point.serialize(b);
direction.serialize(b);
}
void LineSegment::deserialize(class BinaryInput& b) {
_point.deserialize(b);
direction.deserialize(b);
}
Vector3 LineSegment::randomPoint() const {
return _point + uniformRandom(0, 1) * direction;
}
/////////////////////////////////////////////////////////////////////////////////////
LineSegment2D LineSegment2D::fromTwoPoints(const Vector2& p0, const Vector2& p1) {
LineSegment2D s;
s.m_origin = p0;
s.m_direction = p1 - p0;
s.m_length = s.m_direction.length();
return s;
}
Vector2 LineSegment2D::point(int i) const {
debugAssert(i == 0 || i == 1);
if (i == 0) {
return m_origin;
} else {
return m_direction + m_origin;
}
}
Vector2 LineSegment2D::closestPoint(const Vector2& Q) const {
// Two constants that appear in the result
const Vector2 k1(m_origin - Q);
const Vector2& k2 = m_direction;
if (fuzzyEq(m_length, 0)) {
// This line segment has no length
return m_origin;
}
// Time [0, 1] at which we hit the closest point travelling from p0 to p1.
// Derivation can be obtained by minimizing the expression
// ||P0 + (P1 - P0)t - Q||.
const float t = -k1.dot(k2) / (m_length * m_length);
if (t < 0) {
// Clipped to low end point
return m_origin;
} else if (t > 1) {
// Clipped to high end point
return m_origin + m_direction;
} else {
// Subsitute into the line equation to find
// the point on the segment.
return m_origin + k2 * t;
}
}
float LineSegment2D::distance(const Vector2& p) const {
Vector2 closest = closestPoint(p);
return (closest - p).length();
}
float LineSegment2D::length() const {
return m_length;
}
Vector2 LineSegment2D::intersection(const LineSegment2D& other) const {
if ((m_origin == other.m_origin) ||
(m_origin == other.m_origin + other.m_direction)) {
return m_origin;
}
if (m_origin + m_direction == other.m_origin) {
return other.m_origin;
}
// Note: Now that we've checked the endpoints, all other parallel lines can now be assumed
// to not intersect (within numerical precision)
Vector2 dir1 = m_direction;
Vector2 dir2 = other.m_direction;
Vector2 origin1 = m_origin;
Vector2 origin2 = other.m_origin;
if (dir1.x == 0) {
// Avoid an upcoming divide by zero
dir1 = dir1.yx();
dir2 = dir2.yx();
origin1 = origin1.yx();
origin2 = origin2.yx();
}
// t1 = ((other.m_origin.x - m_origin.x) + other.m_direction.x * t2) / m_direction.x
//
// ((other.m_origin.x - m_origin.x) + other.m_direction.x * t2) * m_direction.y / m_direction.x =
// (other.m_origin.y - m_origin.y) + other.m_direction.y * t2
//
// m = m_direction.y / m_direction.x
// d = other.m_origin - m_origin
//
// (d.x + other.m_direction.x * t2) * m = d.y + other.m_direction.y * t2
//
// d.x * m + other.m_direction.x * m * t2 = d.y + other.m_direction.y * t2
//
// d.x * m - d.y = (other.m_direction.y - other.m_direction.x * m) * t2
//
// (d.x * m - d.y) / (other.m_direction.y - other.m_direction.x * m) = t2
//
Vector2 d = origin2 - origin1;
float m = dir1.y / dir1.x;
float t2 = (d.x * m - d.y) / (dir2.y - dir2.x * m);
if (! isFinite(t2)) {
// Parallel lines: no intersection
return Vector2::inf();
}
if ((t2 < 0.0f) || (t2 > 1.0f)) {
// Intersection occurs past the end of the line segments
return Vector2::inf();
}
float t1 = (d.x + dir2.x * t2) / dir1.x;
if ((t1 < 0.0f) || (t1 > 1.0f)) {
// Intersection occurs past the end of the line segments
return Vector2::inf();
}
// Return the intersection point (computed from non-transposed
// variables even if we flipped above)
return m_origin + m_direction * t1;
}
}