mxwcore-legion/dep/g3dlite/source/ConvexPolyhedron.cpp

458 lines
13 KiB
C++

/**
@file ConvexPolyhedron.cpp
@author Morgan McGuire, http://graphics.cs.williams.edu
@created 2001-11-11
@edited 2009-08-10
Copyright 2000-2009, Morgan McGuire.
All rights reserved.
*/
#include "G3D/platform.h"
#include "G3D/ConvexPolyhedron.h"
#include "G3D/debug.h"
namespace G3D {
ConvexPolygon::ConvexPolygon(const Array<Vector3>& __vertex) : _vertex(__vertex) {
// Intentionally empty
}
ConvexPolygon::ConvexPolygon(const Vector3& v0, const Vector3& v1, const Vector3& v2) {
_vertex.append(v0, v1, v2);
}
bool ConvexPolygon::isEmpty() const {
return (_vertex.length() == 0) || (getArea() <= fuzzyEpsilon32);
}
float ConvexPolygon::getArea() const {
if (_vertex.length() < 3) {
return 0;
}
float sum = 0;
int length = _vertex.length();
// Split into triangle fan, compute individual area
for (int v = 2; v < length; ++v) {
int i0 = 0;
int i1 = v - 1;
int i2 = v;
sum += (_vertex[i1] - _vertex[i0]).cross(_vertex[i2] - _vertex[i0]).magnitude() / 2;
}
return sum;
}
void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below) {
DirectedEdge edge;
cut(plane, above, below, edge);
}
void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below, DirectedEdge &newEdge) {
above._vertex.resize(0);
below._vertex.resize(0);
if (isEmpty()) {
//debugPrintf("Empty\n");
return;
}
int v = 0;
int length = _vertex.length();
Vector3 polyNormal = normal();
Vector3 planeNormal= plane.normal();
// See if the polygon is *in* the plane.
if (planeNormal.fuzzyEq(polyNormal) || planeNormal.fuzzyEq(-polyNormal)) {
// Polygon is parallel to the plane. It must be either above,
// below, or in the plane.
double a, b, c, d;
Vector3 pt = _vertex[0];
plane.getEquation(a,b,c,d);
float r = (float)(a * pt.x + b * pt.y + c * pt.z + d);
if (fuzzyGe(r, 0)) {
// The polygon is entirely in the plane.
//debugPrintf("Entirely above\n");
above = *this;
return;
} else {
//debugPrintf("Entirely below (1)\n");
below = *this;
return;
}
}
// Number of edges crossing the plane. Used for
// debug assertions.
int count = 0;
// True when the last _vertex we looked at was above the plane
bool lastAbove = plane.halfSpaceContains(_vertex[v]);
if (lastAbove) {
above._vertex.append(_vertex[v]);
} else {
below._vertex.append(_vertex[v]);
}
for (v = 1; v < length; ++v) {
bool isAbove = plane.halfSpaceContains(_vertex[v]);
if (lastAbove ^ isAbove) {
// Switched sides.
// Create an interpolated point that lies
// in the plane, between the two points.
Line line = Line::fromTwoPoints(_vertex[v - 1], _vertex[v]);
Vector3 interp = line.intersection(plane);
if (! interp.isFinite()) {
// Since the polygon is not in the plane (we checked above),
// it must be the case that this edge (and only this edge)
// is in the plane. This only happens when the polygon is
// entirely below the plane except for one edge. This edge
// forms a degenerate polygon, so just treat the whole polygon
// as below the plane.
below = *this;
above._vertex.resize(0);
//debugPrintf("Entirely below\n");
return;
}
above._vertex.append(interp);
below._vertex.append(interp);
if (lastAbove) {
newEdge.stop = interp;
} else {
newEdge.start = interp;
}
++count;
}
lastAbove = isAbove;
if (lastAbove) {
above._vertex.append(_vertex[v]);
} else {
below._vertex.append(_vertex[v]);
}
}
// Loop back to the first point, seeing if an interpolated point is
// needed.
bool isAbove = plane.halfSpaceContains(_vertex[0]);
if (lastAbove ^ isAbove) {
Line line = Line::fromTwoPoints(_vertex[length - 1], _vertex[0]);
Vector3 interp = line.intersection(plane);
if (! interp.isFinite()) {
// Since the polygon is not in the plane (we checked above),
// it must be the case that this edge (and only this edge)
// is in the plane. This only happens when the polygon is
// entirely below the plane except for one edge. This edge
// forms a degenerate polygon, so just treat the whole polygon
// as below the plane.
below = *this;
above._vertex.resize(0);
//debugPrintf("Entirely below\n");
return;
}
above._vertex.append(interp);
below._vertex.append(interp);
debugAssertM(count < 2, "Convex polygons may only intersect planes at two edges.");
if (lastAbove) {
newEdge.stop = interp;
} else {
newEdge.start = interp;
}
++count;
}
debugAssertM((count == 2) || (count == 0), "Convex polygons may only intersect planes at two edges.");
}
ConvexPolygon ConvexPolygon::inverse() const {
ConvexPolygon result;
int length = _vertex.length();
result._vertex.resize(length);
for (int v = 0; v < length; ++v) {
result._vertex[v] = _vertex[length - v - 1];
}
return result;
}
void ConvexPolygon::removeDuplicateVertices(){
// Any valid polygon should have 3 or more vertices, but why take chances?
if (_vertex.size() >= 2){
// Remove duplicate vertices.
for (int i=0;i<_vertex.size()-1;++i){
if (_vertex[i].fuzzyEq(_vertex[i+1])){
_vertex.remove(i+1);
--i; // Don't move forward.
}
}
// Check the last vertex against the first.
if (_vertex[_vertex.size()-1].fuzzyEq(_vertex[0])){
_vertex.pop();
}
}
}
//////////////////////////////////////////////////////////////////////////////
ConvexPolyhedron::ConvexPolyhedron(const Array<ConvexPolygon>& _face) : face(_face) {
// Intentionally empty
}
float ConvexPolyhedron::getVolume() const {
if (face.length() < 4) {
return 0;
}
// The volume of any pyramid is 1/3 * h * base area.
// Discussion at: http://nrich.maths.org/mathsf/journalf/oct01/art1/
float sum = 0;
// Choose the first _vertex of the first face as the origin.
// This lets us skip one face, too, and avoids negative heights.
Vector3 v0 = face[0]._vertex[0];
for (int f = 1; f < face.length(); ++f) {
const ConvexPolygon& poly = face[f];
float height = (poly._vertex[0] - v0).dot(poly.normal());
float base = poly.getArea();
sum += height * base;
}
return sum / 3;
}
bool ConvexPolyhedron::isEmpty() const {
return (face.length() == 0) || (getVolume() <= fuzzyEpsilon32);
}
void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPolyhedron &below) {
above.face.resize(0);
below.face.resize(0);
Array<DirectedEdge> edge;
int f;
// See if the plane cuts this polyhedron at all. Detect when
// the polyhedron is entirely to one side or the other.
//{
int numAbove = 0, numIn = 0, numBelow = 0;
bool ruledOut = false;
double d;
Vector3 abc;
plane.getEquation(abc, d);
// This number has to be fairly large to prevent precision problems down
// the road.
const float eps = 0.005f;
for (f = face.length() - 1; (f >= 0) && (!ruledOut); f--) {
const ConvexPolygon& poly = face[f];
for (int v = poly._vertex.length() - 1; (v >= 0) && (!ruledOut); v--) {
double r = abc.dot(poly._vertex[v]) + d;
if (r > eps) {
++numAbove;
} else if (r < -eps) {
++numBelow;
} else {
++numIn;
}
ruledOut = (numAbove != 0) && (numBelow !=0);
}
}
if (numBelow == 0) {
above = *this;
return;
} else if (numAbove == 0) {
below = *this;
return;
}
//}
// Clip each polygon, collecting split edges.
for (f = face.length() - 1; f >= 0; f--) {
ConvexPolygon a, b;
DirectedEdge e;
face[f].cut(plane, a, b, e);
bool aEmpty = a.isEmpty();
bool bEmpty = b.isEmpty();
//debugPrintf("\n");
if (! aEmpty) {
//debugPrintf(" Above %f\n", a.getArea());
above.face.append(a);
}
if (! bEmpty) {
//debugPrintf(" Below %f\n", b.getArea());
below.face.append(b);
}
if (! aEmpty && ! bEmpty) {
//debugPrintf(" == Split\n");
edge.append(e);
} else {
// Might be the case that the polygon is entirely on
// one side of the plane yet there is an edge we need
// because it touches the plane.
//
// Extract the non-empty _vertex list and examine it.
// If we find exactly one edge in the plane, add that edge.
const Array<Vector3>& _vertex = (aEmpty ? b._vertex : a._vertex);
int L = _vertex.length();
int count = 0;
for (int v = 0; v < L; ++v) {
if (plane.fuzzyContains(_vertex[v]) && plane.fuzzyContains(_vertex[(v + 1) % L])) {
e.start = _vertex[v];
e.stop = _vertex[(v + 1) % L];
++count;
}
}
if (count == 1) {
edge.append(e);
}
}
}
if (above.face.length() == 1) {
// Only one face above means that this entire
// polyhedron is below the plane. Move that face over.
below.face.append(above.face[0]);
above.face.resize(0);
} else if (below.face.length() == 1) {
// This shouldn't happen, but it arises in practice
// from numerical imprecision.
above.face.append(below.face[0]);
below.face.resize(0);
}
if ((above.face.length() > 0) && (below.face.length() > 0)) {
// The polyhedron was actually cut; create a cap polygon
ConvexPolygon cap;
// Collect the final polgyon by sorting the edges
int numVertices = edge.length();
/*debugPrintf("\n");
for (int xx=0; xx < numVertices; ++xx) {
std::string s1 = edge[xx].start.toString();
std::string s2 = edge[xx].stop.toString();
debugPrintf("%s -> %s\n", s1.c_str(), s2.c_str());
}
*/
// Need at least three points to make a polygon
debugAssert(numVertices >= 3);
Vector3 last_vertex = edge.last().stop;
cap._vertex.append(last_vertex);
// Search for the next _vertex. Because of accumulating
// numerical error, we have to find the closest match, not
// just the one we expect.
for (int v = numVertices - 1; v >= 0; v--) {
// matching edge index
int index = 0;
int num = edge.length();
double distance = (edge[index].start - last_vertex).squaredMagnitude();
for (int e = 1; e < num; ++e) {
double d = (edge[e].start - last_vertex).squaredMagnitude();
if (d < distance) {
// This is the new closest one
index = e;
distance = d;
}
}
// Don't tolerate ridiculous error.
debugAssertM(distance < 0.02, "Edge missing while closing polygon.");
last_vertex = edge[index].stop;
cap._vertex.append(last_vertex);
}
//debugPrintf("\n");
//debugPrintf("Cap (both) %f\n", cap.getArea());
above.face.append(cap);
below.face.append(cap.inverse());
}
// Make sure we put enough faces on each polyhedra
debugAssert((above.face.length() == 0) || (above.face.length() >= 4));
debugAssert((below.face.length() == 0) || (below.face.length() >= 4));
}
///////////////////////////////////////////////
ConvexPolygon2D::ConvexPolygon2D(const Array<Vector2>& pts, bool reverse) : m_vertex(pts) {
if (reverse) {
m_vertex.reverse();
}
}
bool ConvexPolygon2D::contains(const Vector2& p, bool reverse) const {
// Compute the signed area of each polygon from p to an edge.
// If the area is non-negative for all polygons then p is inside
// the polygon. (To adapt this algorithm for a concave polygon,
// the *sum* of the areas must be non-negative).
float r = reverse ? -1.0f : 1.0f;
for (int i0 = 0; i0 < m_vertex.size(); ++i0) {
int i1 = (i0 + 1) % m_vertex.size();
const Vector2& v0 = m_vertex[i0];
const Vector2& v1 = m_vertex[i1];
Vector2 e0 = v0 - p;
Vector2 e1 = v1 - p;
// Area = (1/2) cross product, negated to be ccw in
// a 2D space; we neglect the 1/2
float area = -(e0.x * e1.y - e0.y * e1.x);
if (area * r < 0) {
return false;
}
}
return true;
}
}