767 lines
20 KiB
C++
767 lines
20 KiB
C++
/**
|
|
\file G3D/Quat.h
|
|
|
|
Quaternion
|
|
|
|
\maintainer Morgan McGuire, http://graphics.cs.williams.edu
|
|
|
|
\created 2002-01-23
|
|
\edited 2011-05-10
|
|
*/
|
|
|
|
#ifndef G3D_Quat_h
|
|
#define G3D_Quat_h
|
|
|
|
#include "G3D/platform.h"
|
|
#include "G3D/g3dmath.h"
|
|
#include "G3D/Vector3.h"
|
|
#include "G3D/Matrix3.h"
|
|
#include <string>
|
|
|
|
namespace G3D {
|
|
|
|
/**
|
|
Arbitrary quaternion (not necessarily unit).
|
|
|
|
Unit quaternions (aka versors) are used in computer graphics to represent
|
|
rotation about an axis. Any 3x3 rotation matrix can
|
|
be stored as a quaternion.
|
|
|
|
A quaternion represents the sum of a real scalar and
|
|
an imaginary vector: ix + jy + kz + w. A unit quaternion
|
|
representing a rotation by A about axis v has the form
|
|
[sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
|
|
is a rotation by -A about v. -q is the same rotation as q
|
|
(negate both the axis and angle).
|
|
|
|
A non-unit quaterion q represents the same rotation as
|
|
q.unitize() (Dam98 pg 28).
|
|
|
|
Although quaternion-vector operations (eg. Quat + Vector3) are
|
|
well defined, they are not supported by this class because
|
|
they typically are bugs when they appear in code.
|
|
|
|
Do not subclass.
|
|
|
|
<B>BETA API -- subject to change</B>
|
|
\cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
|
|
*/
|
|
class Quat {
|
|
private:
|
|
// Hidden operators
|
|
bool operator<(const Quat&) const;
|
|
bool operator>(const Quat&) const;
|
|
bool operator<=(const Quat&) const;
|
|
bool operator>=(const Quat&) const;
|
|
|
|
public:
|
|
|
|
/**
|
|
q = [sin(angle / 2) * axis, cos(angle / 2)]
|
|
|
|
In Watt & Watt's notation, s = w, v = (x, y, z)
|
|
In the Real-Time Rendering notation, u = (x, y, z), w = w
|
|
*/
|
|
float x, y, z, w;
|
|
|
|
/**
|
|
Initializes to a zero degree rotation, (0,0,0,1)
|
|
*/
|
|
Quat() : x(0), y(0), z(0), w(1) {}
|
|
|
|
/** Expects "Quat(x,y,z,w)" or a Matrix3 constructor. */
|
|
Quat(const class Any& a);
|
|
|
|
Any toAny() const;
|
|
|
|
Quat(const Matrix3& rot);
|
|
|
|
Quat(float _x, float _y, float _z, float _w) :
|
|
x(_x), y(_y), z(_z), w(_w) {}
|
|
|
|
/** Defaults to a pure vector quaternion */
|
|
Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
|
|
}
|
|
|
|
/** True if the components are exactly equal. Note that two quaternations may
|
|
be unequal but map to the same rotation. */
|
|
bool operator==(const Quat& q) const {
|
|
return x == q.x && y == q.y && z == q.z && w == q.w;
|
|
}
|
|
|
|
/**
|
|
The real part of the quaternion.
|
|
*/
|
|
const float& real() const {
|
|
return w;
|
|
}
|
|
|
|
float& real() {
|
|
return w;
|
|
}
|
|
|
|
Quat operator-() const {
|
|
return Quat(-x, -y, -z, -w);
|
|
}
|
|
|
|
Quat operator-(const Quat& other) const {
|
|
return Quat(x - other.x, y - other.y, z - other.z, w - other.w);
|
|
}
|
|
|
|
Quat& operator-=(const Quat& q) {
|
|
x -= q.x;
|
|
y -= q.y;
|
|
z -= q.z;
|
|
w -= q.w;
|
|
return *this;
|
|
}
|
|
|
|
Quat operator+(const Quat& q) const {
|
|
return Quat(x + q.x, y + q.y, z + q.z, w + q.w);
|
|
}
|
|
|
|
Quat& operator+=(const Quat& q) {
|
|
x += q.x;
|
|
y += q.y;
|
|
z += q.z;
|
|
w += q.w;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
Negates the imaginary part.
|
|
*/
|
|
Quat conj() const {
|
|
return Quat(-x, -y, -z, w);
|
|
}
|
|
|
|
float sum() const {
|
|
return x + y + z + w;
|
|
}
|
|
|
|
float average() const {
|
|
return sum() / 4.0f;
|
|
}
|
|
|
|
Quat operator*(float s) const {
|
|
return Quat(x * s, y * s, z * s, w * s);
|
|
}
|
|
|
|
Quat& operator*=(float s) {
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
w *= s;
|
|
return *this;
|
|
}
|
|
|
|
|
|
/** @cite Based on Watt & Watt, page 360 */
|
|
friend Quat operator* (float s, const Quat& q);
|
|
|
|
inline Quat operator/(float s) const {
|
|
return Quat(x / s, y / s, z / s, w / s);
|
|
}
|
|
|
|
float dot(const Quat& other) const {
|
|
return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
|
|
}
|
|
|
|
/** Note: two quats can represent the Quat::sameRotation and not be equal. */
|
|
bool fuzzyEq(const Quat& q) {
|
|
return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
|
|
}
|
|
|
|
/** True if these quaternions represent the same rotation (note that every rotation is
|
|
represented by two values; q and -q).
|
|
*/
|
|
bool sameRotation(const Quat& q) {
|
|
return fuzzyEq(q) || fuzzyEq(-q);
|
|
}
|
|
|
|
/**
|
|
Returns the imaginary part (x, y, z)
|
|
*/
|
|
const Vector3& imag() const {
|
|
return *(reinterpret_cast<const Vector3*>(this));
|
|
}
|
|
|
|
Vector3& imag() {
|
|
return *(reinterpret_cast<Vector3*>(this));
|
|
}
|
|
|
|
/** q = [sin(angle/2)*axis, cos(angle/2)] */
|
|
static Quat fromAxisAngleRotation(
|
|
const Vector3& axis,
|
|
float angle);
|
|
|
|
/** Returns the axis and angle of rotation represented
|
|
by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
|
|
void toAxisAngleRotation(
|
|
Vector3& axis,
|
|
double& angle) const;
|
|
|
|
void toAxisAngleRotation(
|
|
Vector3& axis,
|
|
float& angle) const {
|
|
double d;
|
|
toAxisAngleRotation(axis, d);
|
|
angle = (float)d;
|
|
}
|
|
|
|
Matrix3 toRotationMatrix() const;
|
|
|
|
void toRotationMatrix(
|
|
Matrix3& rot) const;
|
|
|
|
private:
|
|
/** \param maxAngle Maximum angle of rotation allowed. If a larger rotation is required, the angle of rotation applied is clamped to maxAngle */
|
|
Quat slerp
|
|
(const Quat& other,
|
|
float alpha,
|
|
float threshold,
|
|
float maxAngle) const;
|
|
public:
|
|
|
|
/**
|
|
Spherical linear interpolation: linear interpolation along the
|
|
shortest (3D) great-circle route between two quaternions.
|
|
|
|
Assumes that both arguments are unit quaternions.
|
|
|
|
Note: Correct rotations are expected between 0 and PI in the right order.
|
|
|
|
\cite Based on Game Physics -- David Eberly pg 538-540
|
|
|
|
\param threshold Critical angle between between rotations (in radians) at which
|
|
the algorithm switches to normalized lerp, which is more
|
|
numerically stable in those situations. 0.0 will always slerp.
|
|
|
|
*/
|
|
Quat slerp
|
|
(const Quat& other,
|
|
float alpha,
|
|
float threshold = 0.05f) const {
|
|
return slerp(other, alpha, threshold, finf());
|
|
}
|
|
|
|
/** Rotates towards \a other by at most \a maxAngle. */
|
|
Quat movedTowards
|
|
(const Quat& other,
|
|
float maxAngle) const {
|
|
return slerp(other, 1.0f, 0.05f, maxAngle);
|
|
}
|
|
|
|
/** Rotates towards \a other by at most \a maxAngle. */
|
|
void moveTowards
|
|
(const Quat& other,
|
|
float maxAngle) {
|
|
*this = movedTowards(other, maxAngle);
|
|
}
|
|
|
|
/** Returns the angle in radians between this and other, assuming both are unit quaternions.
|
|
|
|
\returns On the range [0, pif()]*/
|
|
float angleBetween(const Quat& other) const;
|
|
|
|
/** Normalized linear interpolation of quaternion components. */
|
|
Quat nlerp(const Quat& other, float alpha) const;
|
|
|
|
|
|
/** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
|
|
@cite Dam99 page 13 */
|
|
inline Quat inverse() const {
|
|
return conj() / dot(*this);
|
|
}
|
|
|
|
/**
|
|
Quaternion multiplication (composition of rotations).
|
|
Note that this does not commute.
|
|
*/
|
|
Quat operator*(const Quat& other) const;
|
|
|
|
/* (*this) * other.inverse() */
|
|
Quat operator/(const Quat& other) const {
|
|
return (*this) * other.inverse();
|
|
}
|
|
|
|
/** Is the magnitude nearly 1.0? */
|
|
bool isUnit(float tolerance = 1e-5) const {
|
|
return abs(dot(*this) - 1.0f) < tolerance;
|
|
}
|
|
|
|
float magnitude() const {
|
|
return sqrtf(dot(*this));
|
|
}
|
|
|
|
Quat log() const {
|
|
if ((x == 0) && (y == 0) && (z == 0)) {
|
|
if (w > 0) {
|
|
return Quat(0, 0, 0, ::logf(w));
|
|
} else if (w < 0) {
|
|
// Log of a negative number. Multivalued, any number of the form
|
|
// (PI * v, ln(-q.w))
|
|
return Quat((float)pi(), 0, 0, ::logf(-w));
|
|
} else {
|
|
// log of zero!
|
|
return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan());
|
|
}
|
|
} else {
|
|
// Partly imaginary.
|
|
float imagLen = sqrtf(x * x + y * y + z * z);
|
|
float len = sqrtf(imagLen * imagLen + w * w);
|
|
float theta = atan2f(imagLen, (float)w);
|
|
float t = theta / imagLen;
|
|
return Quat(t * x, t * y, t * z, ::logf(len));
|
|
}
|
|
}
|
|
|
|
/** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
|
|
Only defined for pure-vector quaternions */
|
|
inline Quat exp() const {
|
|
debugAssertM(w == 0, "exp only defined for vector quaternions");
|
|
Vector3 u(x, y, z);
|
|
float A = u.magnitude();
|
|
Vector3 v = u / A;
|
|
return Quat(sinf(A) * v, cosf(A));
|
|
}
|
|
|
|
|
|
/**
|
|
Raise this quaternion to a power. For a rotation, this is
|
|
the effect of rotating x times as much as the original
|
|
quaterion.
|
|
|
|
Note that q.pow(a).pow(b) == q.pow(a + b)
|
|
@cite Dam98 pg 21
|
|
*/
|
|
inline Quat pow(float x) const {
|
|
return (log() * x).exp();
|
|
}
|
|
|
|
/** Make unit length in place */
|
|
void unitize() {
|
|
*this *= rsq(dot(*this));
|
|
}
|
|
|
|
/**
|
|
Returns a unit quaterion obtained by dividing through by
|
|
the magnitude.
|
|
*/
|
|
Quat toUnit() const {
|
|
Quat x = *this;
|
|
x.unitize();
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
The linear algebra 2-norm, sqrt(q dot q). This matches
|
|
the value used in Dam's 1998 tech report but differs from the
|
|
n(q) value used in Eberly's 1999 paper, which is the square of the
|
|
norm.
|
|
*/
|
|
float norm() const {
|
|
return magnitude();
|
|
}
|
|
|
|
// access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
|
|
//
|
|
// WARNING. These member functions rely on
|
|
// (1) Quat not having virtual functions
|
|
// (2) the data packed in a 4*sizeof(float) memory block
|
|
const float& operator[] (int i) const;
|
|
float& operator[] (int i);
|
|
|
|
/** Generate uniform random unit quaternion (i.e. random "direction")
|
|
@cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
|
|
*/
|
|
static Quat unitRandom();
|
|
|
|
void deserialize(class BinaryInput& b);
|
|
void serialize(class BinaryOutput& b) const;
|
|
|
|
// 2-char swizzles
|
|
|
|
Vector2 xx() const;
|
|
Vector2 yx() const;
|
|
Vector2 zx() const;
|
|
Vector2 wx() const;
|
|
Vector2 xy() const;
|
|
Vector2 yy() const;
|
|
Vector2 zy() const;
|
|
Vector2 wy() const;
|
|
Vector2 xz() const;
|
|
Vector2 yz() const;
|
|
Vector2 zz() const;
|
|
Vector2 wz() const;
|
|
Vector2 xw() const;
|
|
Vector2 yw() const;
|
|
Vector2 zw() const;
|
|
Vector2 ww() const;
|
|
|
|
// 3-char swizzles
|
|
|
|
Vector3 xxx() const;
|
|
Vector3 yxx() const;
|
|
Vector3 zxx() const;
|
|
Vector3 wxx() const;
|
|
Vector3 xyx() const;
|
|
Vector3 yyx() const;
|
|
Vector3 zyx() const;
|
|
Vector3 wyx() const;
|
|
Vector3 xzx() const;
|
|
Vector3 yzx() const;
|
|
Vector3 zzx() const;
|
|
Vector3 wzx() const;
|
|
Vector3 xwx() const;
|
|
Vector3 ywx() const;
|
|
Vector3 zwx() const;
|
|
Vector3 wwx() const;
|
|
Vector3 xxy() const;
|
|
Vector3 yxy() const;
|
|
Vector3 zxy() const;
|
|
Vector3 wxy() const;
|
|
Vector3 xyy() const;
|
|
Vector3 yyy() const;
|
|
Vector3 zyy() const;
|
|
Vector3 wyy() const;
|
|
Vector3 xzy() const;
|
|
Vector3 yzy() const;
|
|
Vector3 zzy() const;
|
|
Vector3 wzy() const;
|
|
Vector3 xwy() const;
|
|
Vector3 ywy() const;
|
|
Vector3 zwy() const;
|
|
Vector3 wwy() const;
|
|
Vector3 xxz() const;
|
|
Vector3 yxz() const;
|
|
Vector3 zxz() const;
|
|
Vector3 wxz() const;
|
|
Vector3 xyz() const;
|
|
Vector3 yyz() const;
|
|
Vector3 zyz() const;
|
|
Vector3 wyz() const;
|
|
Vector3 xzz() const;
|
|
Vector3 yzz() const;
|
|
Vector3 zzz() const;
|
|
Vector3 wzz() const;
|
|
Vector3 xwz() const;
|
|
Vector3 ywz() const;
|
|
Vector3 zwz() const;
|
|
Vector3 wwz() const;
|
|
Vector3 xxw() const;
|
|
Vector3 yxw() const;
|
|
Vector3 zxw() const;
|
|
Vector3 wxw() const;
|
|
Vector3 xyw() const;
|
|
Vector3 yyw() const;
|
|
Vector3 zyw() const;
|
|
Vector3 wyw() const;
|
|
Vector3 xzw() const;
|
|
Vector3 yzw() const;
|
|
Vector3 zzw() const;
|
|
Vector3 wzw() const;
|
|
Vector3 xww() const;
|
|
Vector3 yww() const;
|
|
Vector3 zww() const;
|
|
Vector3 www() const;
|
|
|
|
// 4-char swizzles
|
|
|
|
Vector4 xxxx() const;
|
|
Vector4 yxxx() const;
|
|
Vector4 zxxx() const;
|
|
Vector4 wxxx() const;
|
|
Vector4 xyxx() const;
|
|
Vector4 yyxx() const;
|
|
Vector4 zyxx() const;
|
|
Vector4 wyxx() const;
|
|
Vector4 xzxx() const;
|
|
Vector4 yzxx() const;
|
|
Vector4 zzxx() const;
|
|
Vector4 wzxx() const;
|
|
Vector4 xwxx() const;
|
|
Vector4 ywxx() const;
|
|
Vector4 zwxx() const;
|
|
Vector4 wwxx() const;
|
|
Vector4 xxyx() const;
|
|
Vector4 yxyx() const;
|
|
Vector4 zxyx() const;
|
|
Vector4 wxyx() const;
|
|
Vector4 xyyx() const;
|
|
Vector4 yyyx() const;
|
|
Vector4 zyyx() const;
|
|
Vector4 wyyx() const;
|
|
Vector4 xzyx() const;
|
|
Vector4 yzyx() const;
|
|
Vector4 zzyx() const;
|
|
Vector4 wzyx() const;
|
|
Vector4 xwyx() const;
|
|
Vector4 ywyx() const;
|
|
Vector4 zwyx() const;
|
|
Vector4 wwyx() const;
|
|
Vector4 xxzx() const;
|
|
Vector4 yxzx() const;
|
|
Vector4 zxzx() const;
|
|
Vector4 wxzx() const;
|
|
Vector4 xyzx() const;
|
|
Vector4 yyzx() const;
|
|
Vector4 zyzx() const;
|
|
Vector4 wyzx() const;
|
|
Vector4 xzzx() const;
|
|
Vector4 yzzx() const;
|
|
Vector4 zzzx() const;
|
|
Vector4 wzzx() const;
|
|
Vector4 xwzx() const;
|
|
Vector4 ywzx() const;
|
|
Vector4 zwzx() const;
|
|
Vector4 wwzx() const;
|
|
Vector4 xxwx() const;
|
|
Vector4 yxwx() const;
|
|
Vector4 zxwx() const;
|
|
Vector4 wxwx() const;
|
|
Vector4 xywx() const;
|
|
Vector4 yywx() const;
|
|
Vector4 zywx() const;
|
|
Vector4 wywx() const;
|
|
Vector4 xzwx() const;
|
|
Vector4 yzwx() const;
|
|
Vector4 zzwx() const;
|
|
Vector4 wzwx() const;
|
|
Vector4 xwwx() const;
|
|
Vector4 ywwx() const;
|
|
Vector4 zwwx() const;
|
|
Vector4 wwwx() const;
|
|
Vector4 xxxy() const;
|
|
Vector4 yxxy() const;
|
|
Vector4 zxxy() const;
|
|
Vector4 wxxy() const;
|
|
Vector4 xyxy() const;
|
|
Vector4 yyxy() const;
|
|
Vector4 zyxy() const;
|
|
Vector4 wyxy() const;
|
|
Vector4 xzxy() const;
|
|
Vector4 yzxy() const;
|
|
Vector4 zzxy() const;
|
|
Vector4 wzxy() const;
|
|
Vector4 xwxy() const;
|
|
Vector4 ywxy() const;
|
|
Vector4 zwxy() const;
|
|
Vector4 wwxy() const;
|
|
Vector4 xxyy() const;
|
|
Vector4 yxyy() const;
|
|
Vector4 zxyy() const;
|
|
Vector4 wxyy() const;
|
|
Vector4 xyyy() const;
|
|
Vector4 yyyy() const;
|
|
Vector4 zyyy() const;
|
|
Vector4 wyyy() const;
|
|
Vector4 xzyy() const;
|
|
Vector4 yzyy() const;
|
|
Vector4 zzyy() const;
|
|
Vector4 wzyy() const;
|
|
Vector4 xwyy() const;
|
|
Vector4 ywyy() const;
|
|
Vector4 zwyy() const;
|
|
Vector4 wwyy() const;
|
|
Vector4 xxzy() const;
|
|
Vector4 yxzy() const;
|
|
Vector4 zxzy() const;
|
|
Vector4 wxzy() const;
|
|
Vector4 xyzy() const;
|
|
Vector4 yyzy() const;
|
|
Vector4 zyzy() const;
|
|
Vector4 wyzy() const;
|
|
Vector4 xzzy() const;
|
|
Vector4 yzzy() const;
|
|
Vector4 zzzy() const;
|
|
Vector4 wzzy() const;
|
|
Vector4 xwzy() const;
|
|
Vector4 ywzy() const;
|
|
Vector4 zwzy() const;
|
|
Vector4 wwzy() const;
|
|
Vector4 xxwy() const;
|
|
Vector4 yxwy() const;
|
|
Vector4 zxwy() const;
|
|
Vector4 wxwy() const;
|
|
Vector4 xywy() const;
|
|
Vector4 yywy() const;
|
|
Vector4 zywy() const;
|
|
Vector4 wywy() const;
|
|
Vector4 xzwy() const;
|
|
Vector4 yzwy() const;
|
|
Vector4 zzwy() const;
|
|
Vector4 wzwy() const;
|
|
Vector4 xwwy() const;
|
|
Vector4 ywwy() const;
|
|
Vector4 zwwy() const;
|
|
Vector4 wwwy() const;
|
|
Vector4 xxxz() const;
|
|
Vector4 yxxz() const;
|
|
Vector4 zxxz() const;
|
|
Vector4 wxxz() const;
|
|
Vector4 xyxz() const;
|
|
Vector4 yyxz() const;
|
|
Vector4 zyxz() const;
|
|
Vector4 wyxz() const;
|
|
Vector4 xzxz() const;
|
|
Vector4 yzxz() const;
|
|
Vector4 zzxz() const;
|
|
Vector4 wzxz() const;
|
|
Vector4 xwxz() const;
|
|
Vector4 ywxz() const;
|
|
Vector4 zwxz() const;
|
|
Vector4 wwxz() const;
|
|
Vector4 xxyz() const;
|
|
Vector4 yxyz() const;
|
|
Vector4 zxyz() const;
|
|
Vector4 wxyz() const;
|
|
Vector4 xyyz() const;
|
|
Vector4 yyyz() const;
|
|
Vector4 zyyz() const;
|
|
Vector4 wyyz() const;
|
|
Vector4 xzyz() const;
|
|
Vector4 yzyz() const;
|
|
Vector4 zzyz() const;
|
|
Vector4 wzyz() const;
|
|
Vector4 xwyz() const;
|
|
Vector4 ywyz() const;
|
|
Vector4 zwyz() const;
|
|
Vector4 wwyz() const;
|
|
Vector4 xxzz() const;
|
|
Vector4 yxzz() const;
|
|
Vector4 zxzz() const;
|
|
Vector4 wxzz() const;
|
|
Vector4 xyzz() const;
|
|
Vector4 yyzz() const;
|
|
Vector4 zyzz() const;
|
|
Vector4 wyzz() const;
|
|
Vector4 xzzz() const;
|
|
Vector4 yzzz() const;
|
|
Vector4 zzzz() const;
|
|
Vector4 wzzz() const;
|
|
Vector4 xwzz() const;
|
|
Vector4 ywzz() const;
|
|
Vector4 zwzz() const;
|
|
Vector4 wwzz() const;
|
|
Vector4 xxwz() const;
|
|
Vector4 yxwz() const;
|
|
Vector4 zxwz() const;
|
|
Vector4 wxwz() const;
|
|
Vector4 xywz() const;
|
|
Vector4 yywz() const;
|
|
Vector4 zywz() const;
|
|
Vector4 wywz() const;
|
|
Vector4 xzwz() const;
|
|
Vector4 yzwz() const;
|
|
Vector4 zzwz() const;
|
|
Vector4 wzwz() const;
|
|
Vector4 xwwz() const;
|
|
Vector4 ywwz() const;
|
|
Vector4 zwwz() const;
|
|
Vector4 wwwz() const;
|
|
Vector4 xxxw() const;
|
|
Vector4 yxxw() const;
|
|
Vector4 zxxw() const;
|
|
Vector4 wxxw() const;
|
|
Vector4 xyxw() const;
|
|
Vector4 yyxw() const;
|
|
Vector4 zyxw() const;
|
|
Vector4 wyxw() const;
|
|
Vector4 xzxw() const;
|
|
Vector4 yzxw() const;
|
|
Vector4 zzxw() const;
|
|
Vector4 wzxw() const;
|
|
Vector4 xwxw() const;
|
|
Vector4 ywxw() const;
|
|
Vector4 zwxw() const;
|
|
Vector4 wwxw() const;
|
|
Vector4 xxyw() const;
|
|
Vector4 yxyw() const;
|
|
Vector4 zxyw() const;
|
|
Vector4 wxyw() const;
|
|
Vector4 xyyw() const;
|
|
Vector4 yyyw() const;
|
|
Vector4 zyyw() const;
|
|
Vector4 wyyw() const;
|
|
Vector4 xzyw() const;
|
|
Vector4 yzyw() const;
|
|
Vector4 zzyw() const;
|
|
Vector4 wzyw() const;
|
|
Vector4 xwyw() const;
|
|
Vector4 ywyw() const;
|
|
Vector4 zwyw() const;
|
|
Vector4 wwyw() const;
|
|
Vector4 xxzw() const;
|
|
Vector4 yxzw() const;
|
|
Vector4 zxzw() const;
|
|
Vector4 wxzw() const;
|
|
Vector4 xyzw() const;
|
|
Vector4 yyzw() const;
|
|
Vector4 zyzw() const;
|
|
Vector4 wyzw() const;
|
|
Vector4 xzzw() const;
|
|
Vector4 yzzw() const;
|
|
Vector4 zzzw() const;
|
|
Vector4 wzzw() const;
|
|
Vector4 xwzw() const;
|
|
Vector4 ywzw() const;
|
|
Vector4 zwzw() const;
|
|
Vector4 wwzw() const;
|
|
Vector4 xxww() const;
|
|
Vector4 yxww() const;
|
|
Vector4 zxww() const;
|
|
Vector4 wxww() const;
|
|
Vector4 xyww() const;
|
|
Vector4 yyww() const;
|
|
Vector4 zyww() const;
|
|
Vector4 wyww() const;
|
|
Vector4 xzww() const;
|
|
Vector4 yzww() const;
|
|
Vector4 zzww() const;
|
|
Vector4 wzww() const;
|
|
Vector4 xwww() const;
|
|
Vector4 ywww() const;
|
|
Vector4 zwww() const;
|
|
Vector4 wwww() const;
|
|
};
|
|
|
|
inline Quat exp(const Quat& q) {
|
|
return q.exp();
|
|
}
|
|
|
|
inline Quat log(const Quat& q) {
|
|
return q.log();
|
|
}
|
|
|
|
inline G3D::Quat operator*(double s, const G3D::Quat& q) {
|
|
return q * (float)s;
|
|
}
|
|
|
|
inline G3D::Quat operator*(float s, const G3D::Quat& q) {
|
|
return q * s;
|
|
}
|
|
|
|
inline float& Quat::operator[] (int i) {
|
|
debugAssert(i >= 0);
|
|
debugAssert(i < 4);
|
|
return ((float*)this)[i];
|
|
}
|
|
|
|
inline const float& Quat::operator[] (int i) const {
|
|
debugAssert(i >= 0);
|
|
debugAssert(i < 4);
|
|
return ((float*)this)[i];
|
|
}
|
|
|
|
|
|
} // Namespace G3D
|
|
|
|
// Outside the namespace to avoid overloading confusion for C++
|
|
inline G3D::Quat pow(const G3D::Quat& q, double x) {
|
|
return q.pow((float)x);
|
|
}
|
|
|
|
|
|
#endif
|