322 lines
9.7 KiB
C
322 lines
9.7 KiB
C
|
#pragma once
|
||
|
/**
|
||
|
* @file SFMT-sse2-msc.h
|
||
|
* @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2 for MSC
|
||
|
*
|
||
|
* @author Mutsuo Saito (Hiroshima University)
|
||
|
* @author Makoto Matsumoto (Hiroshima University)
|
||
|
*
|
||
|
* @note We assume LITTLE ENDIAN in this file
|
||
|
*
|
||
|
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||
|
* University. All rights reserved.
|
||
|
* Copyright (C) 2013 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||
|
* University.
|
||
|
*
|
||
|
* The new BSD License is applied to this software, see LICENSE.txt
|
||
|
*/
|
||
|
|
||
|
#ifndef SFMT_SSE2_MSC_H
|
||
|
#define SFMT_SSE2_MSC_H
|
||
|
|
||
|
/* This header file is included only when _MSC_VER is defined. */
|
||
|
#if _MSC_VER > 1700
|
||
|
|
||
|
inline static __m128i __vectorcall mm_recursion(__m128i a, __m128i b,
|
||
|
__m128i c, __m128i d);
|
||
|
|
||
|
/**
|
||
|
* This function represents the recursion formula.
|
||
|
* @param a a 128-bit part of the interal state array
|
||
|
* @param b a 128-bit part of the interal state array
|
||
|
* @param c a 128-bit part of the interal state array
|
||
|
* @param d a 128-bit part of the interal state array
|
||
|
* @return new value
|
||
|
*/
|
||
|
inline static __m128i __vectorcall mm_recursion(__m128i a, __m128i b,
|
||
|
__m128i c, __m128i d)
|
||
|
{
|
||
|
__m128i v, x, y, z;
|
||
|
|
||
|
y = _mm_srli_epi32(b, SFMT_SR1);
|
||
|
z = _mm_srli_si128(c, SFMT_SR2);
|
||
|
v = _mm_slli_epi32(d, SFMT_SL1);
|
||
|
z = _mm_xor_si128(z, a);
|
||
|
z = _mm_xor_si128(z, v);
|
||
|
x = _mm_slli_si128(a, SFMT_SL2);
|
||
|
y = _mm_and_si128(y, sse2_param_mask.si);
|
||
|
z = _mm_xor_si128(z, x);
|
||
|
return _mm_xor_si128(z, y);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the internal state array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state
|
||
|
*/
|
||
|
void sfmt_gen_rand_all(sfmt_t * sfmt) {
|
||
|
int i;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
pstate[i].si = mm_recursion(pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
pstate[i].si = mm_recursion(pstate[i].si,
|
||
|
pstate[i + SFMT_POS1 - SFMT_N].si,
|
||
|
r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the user-specified array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state.
|
||
|
* @param array an 128-bit array to be filled by pseudorandom numbers.
|
||
|
* @param size number of 128-bit pseudorandom numbers to be generated.
|
||
|
*/
|
||
|
static void gen_rand_array(sfmt_t * sfmt, w128_t * array, int size)
|
||
|
{
|
||
|
int i, j;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
array[i].si = mm_recursion(pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
array[i].si = mm_recursion(pstate[i].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < size - SFMT_N; i++) {
|
||
|
array[i].si = mm_recursion(array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (j = 0; j < 2 * SFMT_N - size; j++) {
|
||
|
pstate[j] = array[j + size - SFMT_N];
|
||
|
}
|
||
|
for (; i < size; i++, j++) {
|
||
|
array[i].si = mm_recursion(array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
pstate[j] = array[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#elif defined(SFMT_USE_MACRO_FUNCTION_FOR_MSC)
|
||
|
/**
|
||
|
* This function represents the recursion formula.
|
||
|
* @param r an output
|
||
|
* @param a a 128-bit part of the interal state array
|
||
|
* @param b a 128-bit part of the interal state array
|
||
|
* @param c a 128-bit part of the interal state array
|
||
|
* @param d a 128-bit part of the interal state array
|
||
|
*/
|
||
|
#define mm_recursion(r, a, b, c, d) \
|
||
|
do { \
|
||
|
__m128i v, x, y, z; \
|
||
|
\
|
||
|
y = _mm_srli_epi32((b), SFMT_SR1); \
|
||
|
z = _mm_srli_si128((c), SFMT_SR2); \
|
||
|
v = _mm_slli_epi32((d), SFMT_SL1); \
|
||
|
z = _mm_xor_si128(z, (a)); \
|
||
|
z = _mm_xor_si128(z, v); \
|
||
|
x = _mm_slli_si128((a), SFMT_SL2); \
|
||
|
y = _mm_and_si128(y, sse2_param_mask.si); \
|
||
|
z = _mm_xor_si128(z, x); \
|
||
|
r = _mm_xor_si128(z, y); \
|
||
|
} while (0)
|
||
|
|
||
|
/**
|
||
|
* This function fills the internal state array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state
|
||
|
*/
|
||
|
void sfmt_gen_rand_all(sfmt_t * sfmt) {
|
||
|
int i;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
mm_recursion(pstate[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
mm_recursion(pstate[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1 - SFMT_N].si,
|
||
|
r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the user-specified array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state.
|
||
|
* @param array an 128-bit array to be filled by pseudorandom numbers.
|
||
|
* @param size number of 128-bit pseudorandom numbers to be generated.
|
||
|
*/
|
||
|
static void gen_rand_array(sfmt_t * sfmt, w128_t * array, int size)
|
||
|
{
|
||
|
int i, j;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
mm_recursion(array[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
mm_recursion(array[i].si, pstate[i].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < size - SFMT_N; i++) {
|
||
|
mm_recursion(array[i].si, array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (j = 0; j < 2 * SFMT_N - size; j++) {
|
||
|
pstate[j] = array[j + size - SFMT_N];
|
||
|
}
|
||
|
for (; i < size; i++, j++) {
|
||
|
mm_recursion(array[i].si, array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
pstate[j] = array[i];
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
inline static void mm_recursion(__m128i * r, __m128i a, __m128i b,
|
||
|
__m128i c, __m128i * d);
|
||
|
|
||
|
/**
|
||
|
* This function represents the recursion formula.
|
||
|
* @param r an output
|
||
|
* @param a a 128-bit part of the interal state array
|
||
|
* @param b a 128-bit part of the interal state array
|
||
|
* @param c a 128-bit part of the interal state array
|
||
|
* @param d a 128-bit part of the interal state array
|
||
|
*/
|
||
|
inline static void mm_recursion(__m128i * r, __m128i a, __m128i b,
|
||
|
__m128i c, __m128i * d)
|
||
|
{
|
||
|
__m128i v, x, y, z;
|
||
|
|
||
|
y = _mm_srli_epi32(b, SFMT_SR1);
|
||
|
z = _mm_srli_si128(c, SFMT_SR2);
|
||
|
v = _mm_slli_epi32(*d, SFMT_SL1);
|
||
|
z = _mm_xor_si128(z, a);
|
||
|
z = _mm_xor_si128(z, v);
|
||
|
x = _mm_slli_si128(a, SFMT_SL2);
|
||
|
y = _mm_and_si128(y, sse2_param_mask.si);
|
||
|
z = _mm_xor_si128(z, x);
|
||
|
z = _mm_xor_si128(z, y);
|
||
|
*r = z;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the internal state array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state
|
||
|
*/
|
||
|
void sfmt_gen_rand_all(sfmt_t * sfmt) {
|
||
|
int i;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
mm_recursion(&pstate[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
mm_recursion(&pstate[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1 - SFMT_N].si,
|
||
|
r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = pstate[i].si;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the user-specified array with pseudorandom
|
||
|
* integers.
|
||
|
* @param sfmt SFMT internal state.
|
||
|
* @param array an 128-bit array to be filled by pseudorandom numbers.
|
||
|
* @param size number of 128-bit pseudorandom numbers to be generated.
|
||
|
*/
|
||
|
static void gen_rand_array(sfmt_t * sfmt, w128_t * array, int size)
|
||
|
{
|
||
|
int i, j;
|
||
|
__m128i r1, r2;
|
||
|
w128_t * pstate = sfmt->state;
|
||
|
|
||
|
r1 = pstate[SFMT_N - 2].si;
|
||
|
r2 = pstate[SFMT_N - 1].si;
|
||
|
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||
|
mm_recursion(&array[i].si, pstate[i].si,
|
||
|
pstate[i + SFMT_POS1].si, r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < SFMT_N; i++) {
|
||
|
mm_recursion(&array[i].si, pstate[i].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (; i < size - SFMT_N; i++) {
|
||
|
mm_recursion(&array[i].si, array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
}
|
||
|
for (j = 0; j < 2 * SFMT_N - size; j++) {
|
||
|
pstate[j] = array[j + size - SFMT_N];
|
||
|
}
|
||
|
for (; i < size; i++, j++) {
|
||
|
mm_recursion(&array[i].si, array[i - SFMT_N].si,
|
||
|
array[i + SFMT_POS1 - SFMT_N].si, r1, &r2);
|
||
|
r1 = r2;
|
||
|
r2 = array[i].si;
|
||
|
pstate[j] = array[i];
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif
|