mxwcore-wotlk/deps/g3dlite/source/BinaryOutput.cpp

550 lines
14 KiB
C++
Raw Normal View History

2023-11-07 05:04:30 -05:00
/**
@file BinaryOutput.cpp
@author Morgan McGuire, http://graphics.cs.williams.edu
Copyright 2002-2011, Morgan McGuire, All rights reserved.
@created 2002-02-20
@edited 2010-03-17
*/
#include "G3D/platform.h"
#include "G3D/BinaryOutput.h"
#include "G3D/fileutils.h"
#include "G3D/FileSystem.h"
#include "G3D/stringutils.h"
#include "G3D/Array.h"
#include <zlib.h>
#include "G3D/Log.h"
#include <cstring>
#ifdef G3D_LINUX
# include <errno.h>
#endif
// Largest memory buffer that the system will use for writing to
// disk. After this (or if the system runs out of memory)
// chunks of the file will be dumped to disk.
//
// Currently 400 MB
#define MAX_BINARYOUTPUT_BUFFER_SIZE 400000000
namespace G3D {
void BinaryOutput::writeBool8(const std::vector<bool>& out, int n) {
for (int i = 0; i < n; ++i) {
writeBool8(out[i]);
}
}
void BinaryOutput::writeBool8(const Array<bool>& out, int n) {
writeBool8(out.getCArray(), n);
}
#define IMPLEMENT_WRITER(ucase, lcase)\
void BinaryOutput::write##ucase(const std::vector<lcase>& out, int n) {\
write##ucase(&out[0], n);\
}\
\
\
void BinaryOutput::write##ucase(const Array<lcase>& out, int n) {\
write##ucase(out.getCArray(), n);\
}
IMPLEMENT_WRITER(UInt8, uint8)
IMPLEMENT_WRITER(Int8, int8)
IMPLEMENT_WRITER(UInt16, uint16)
IMPLEMENT_WRITER(Int16, int16)
IMPLEMENT_WRITER(UInt32, uint32)
IMPLEMENT_WRITER(Int32, int32)
IMPLEMENT_WRITER(UInt64, uint64)
IMPLEMENT_WRITER(Int64, int64)
IMPLEMENT_WRITER(Float32, float32)
IMPLEMENT_WRITER(Float64, float64)
#undef IMPLEMENT_WRITER
// Data structures that are one byte per element can be
// directly copied, regardles of endian-ness.
#define IMPLEMENT_WRITER(ucase, lcase)\
void BinaryOutput::write##ucase(const lcase* out, int n) {\
if (sizeof(lcase) == 1) {\
writeBytes((void*)out, n);\
} else {\
for (int i = 0; i < n ; ++i) {\
write##ucase(out[i]);\
}\
}\
}
IMPLEMENT_WRITER(Bool8, bool)
IMPLEMENT_WRITER(UInt8, uint8)
IMPLEMENT_WRITER(Int8, int8)
#undef IMPLEMENT_WRITER
#define IMPLEMENT_WRITER(ucase, lcase)\
void BinaryOutput::write##ucase(const lcase* out, int n) {\
if (m_swapBytes) {\
for (int i = 0; i < n; ++i) {\
write##ucase(out[i]);\
}\
} else {\
writeBytes((const void*)out, sizeof(lcase) * n);\
}\
}
IMPLEMENT_WRITER(UInt16, uint16)
IMPLEMENT_WRITER(Int16, int16)
IMPLEMENT_WRITER(UInt32, uint32)
IMPLEMENT_WRITER(Int32, int32)
IMPLEMENT_WRITER(UInt64, uint64)
IMPLEMENT_WRITER(Int64, int64)
IMPLEMENT_WRITER(Float32, float32)
IMPLEMENT_WRITER(Float64, float64)
#undef IMPLEMENT_WRITER
void BinaryOutput::reallocBuffer(size_t bytes, size_t oldBufferLen) {
//debugPrintf("reallocBuffer(%d, %d)\n", bytes, oldBufferLen);
size_t newBufferLen = (int)(m_bufferLen * 1.5) + 100;
uint8* newBuffer = NULL;
if ((m_filename == "<memory>") || (newBufferLen < MAX_BINARYOUTPUT_BUFFER_SIZE)) {
// We're either writing to memory (in which case we *have* to
// try and allocate) or we've been asked to allocate a
// reasonable size buffer.
// debugPrintf(" realloc(%d)\n", newBufferLen);
newBuffer = (uint8*)System::realloc(m_buffer, newBufferLen);
if (newBuffer != NULL) {
m_maxBufferLen = newBufferLen;
}
}
if ((newBuffer == NULL) && (bytes > 0)) {
// Realloc failed; we're probably out of memory. Back out
// the entire call and try to dump some data to disk.
alwaysAssertM(m_filename != "<memory>", "Realloc failed while writing to memory.");
m_bufferLen = oldBufferLen;
reserveBytesWhenOutOfMemory(bytes);
} else {
// Realloc succeeded
m_buffer = newBuffer;
debugAssert(isValidHeapPointer(m_buffer));
}
}
void BinaryOutput::reserveBytesWhenOutOfMemory(size_t bytes) {
if (m_filename == "<memory>") {
throw "Out of memory while writing to memory in BinaryOutput (no RAM left).";
} else if ((int)bytes > (int)m_maxBufferLen) {
throw "Out of memory while writing to disk in BinaryOutput (could not create a large enough buffer).";
} else {
// Dump the contents to disk. In order to enable seeking backwards,
// we keep the last 10 MB in memory.
size_t writeBytes = m_bufferLen - 10 * 1024 * 1024;
if (writeBytes < m_bufferLen / 3) {
// We're going to write less than 1/3 of the file;
// give up and just write the whole thing.
writeBytes = m_bufferLen;
}
debugAssert(writeBytes > 0);
//debugPrintf("Writing %d bytes to disk\n", writeBytes);
const char* mode = (m_alreadyWritten > 0) ? "ab" : "wb";
alwaysAssertM(m_filename != "<memory>", "Writing memory file");
FILE* file = FileSystem::fopen(m_filename.c_str(), mode);
debugAssert(file);
size_t count = fwrite(m_buffer, 1, writeBytes, file);
debugAssert(count == writeBytes); (void)count;
fclose(file);
file = NULL;
// Record that we saved this data.
m_alreadyWritten += writeBytes;
m_bufferLen -= writeBytes;
m_pos -= writeBytes;
debugAssert(m_bufferLen < m_maxBufferLen);
debugAssert(m_bufferLen >= 0);
debugAssert(m_pos >= 0);
debugAssert(m_pos <= (int64)m_bufferLen);
// Shift the unwritten data back appropriately in the buffer.
debugAssert(isValidHeapPointer(m_buffer));
System::memcpy(m_buffer, m_buffer + writeBytes, m_bufferLen);
debugAssert(isValidHeapPointer(m_buffer));
// *now* we allocate bytes (there should presumably be enough
// space in the buffer; if not, we'll come back through this
// code and dump the last 10MB to disk as well. Note that the
// bytes > maxBufferLen case above would already have triggered
// if this call couldn't succeed.
reserveBytes(bytes);
}
}
BinaryOutput::BinaryOutput() {
m_alreadyWritten = 0;
m_swapBytes = false;
m_pos = 0;
m_filename = "<memory>";
m_buffer = NULL;
m_bufferLen = 0;
m_maxBufferLen = 0;
m_beginEndBits = 0;
m_bitString = 0;
m_bitPos = 0;
m_ok = true;
m_committed = false;
}
BinaryOutput::BinaryOutput(
const std::string& filename,
G3DEndian fileEndian) {
m_pos = 0;
m_alreadyWritten = 0;
setEndian(fileEndian);
m_filename = filename;
m_buffer = NULL;
m_bufferLen = 0;
m_maxBufferLen = 0;
m_beginEndBits = 0;
m_bitString = 0;
m_bitPos = 0;
m_committed = false;
m_ok = true;
/** Verify ability to write to disk */
commit(false);
m_committed = false;
}
void BinaryOutput::reset() {
debugAssert(m_beginEndBits == 0);
alwaysAssertM(m_filename == "<memory>",
"Can only reset a BinaryOutput that writes to memory.");
// Do not reallocate, just clear the size of the buffer.
m_pos = 0;
m_alreadyWritten = 0;
m_bufferLen = 0;
m_beginEndBits = 0;
m_bitString = 0;
m_bitPos = 0;
m_committed = false;
}
BinaryOutput::~BinaryOutput() {
debugAssert((m_buffer == NULL) || isValidHeapPointer(m_buffer));
System::free(m_buffer);
m_buffer = NULL;
m_bufferLen = 0;
m_maxBufferLen = 0;
}
void BinaryOutput::setEndian(G3DEndian fileEndian) {
m_fileEndian = fileEndian;
m_swapBytes = (fileEndian != System::machineEndian());
}
bool BinaryOutput::ok() const {
return m_ok;
}
void BinaryOutput::compress(int level) {
if (m_alreadyWritten > 0) {
throw "Cannot compress huge files (part of this file has already been written to disk).";
}
debugAssertM(! m_committed, "Cannot compress after committing.");
alwaysAssertM(m_bufferLen < 0xFFFFFFFF, "Compress only works for 32-bit files.");
// This is the worst-case size, as mandated by zlib
unsigned long compressedSize = iCeil(m_bufferLen * 1.001) + 12;
// Save the old buffer and reallocate to the worst-case size
const uint8* src = m_buffer;
const uint32 srcSize = (uint32)m_bufferLen;
// add space for the 4-byte header
m_maxBufferLen = compressedSize + 4;
m_buffer = (uint8*)System::malloc(m_maxBufferLen);
// Write the header containing the old buffer size, which is needed for decompression
{
const uint8* convert = (const uint8*)&srcSize;
if (m_swapBytes) {
m_buffer[0] = convert[3];
m_buffer[1] = convert[2];
m_buffer[2] = convert[1];
m_buffer[3] = convert[0];
} else {
m_buffer[0] = convert[0];
m_buffer[1] = convert[1];
m_buffer[2] = convert[2];
m_buffer[3] = convert[3];
}
}
// Compress and write after the header
int result = compress2(m_buffer + 4, &compressedSize, src, srcSize, iClamp(level, 0, 9));
debugAssert(result == Z_OK); (void)result;
m_bufferLen = compressedSize + 4;
m_pos = m_bufferLen;
// Free the old data
System::free((void*)src);
}
void BinaryOutput::commit(bool flush) {
debugAssertM(! m_committed, "Cannot commit twice");
m_committed = true;
debugAssertM(m_beginEndBits == 0, "Missing endBits before commit");
if (m_filename == "<memory>") {
return;
}
// Make sure the directory exists.
std::string root, base, ext, path;
Array<std::string> pathArray;
parseFilename(m_filename, root, pathArray, base, ext);
path = root + stringJoin(pathArray, '/');
if (! FileSystem::exists(path, false)) {
FileSystem::createDirectory(path);
}
const char* mode = (m_alreadyWritten > 0) ? "ab" : "wb";
alwaysAssertM(m_filename != "<memory>", "Writing to memory file");
FILE* file = FileSystem::fopen(m_filename.c_str(), mode);
if (! file) {
logPrintf("Error %d while trying to open \"%s\"\n", errno, m_filename.c_str());
}
m_ok = (file != NULL) && m_ok;
if (m_ok) {
debugAssertM(file, std::string("Could not open '") + m_filename + "'");
if (m_buffer != NULL) {
m_alreadyWritten += m_bufferLen;
size_t success = fwrite(m_buffer, m_bufferLen, 1, file);
(void)success;
debugAssertM(success == 1, std::string("Could not write to '") + m_filename + "'");
}
if (flush) {
fflush(file);
}
FileSystem::fclose(file);
file = NULL;
}
}
void BinaryOutput::commit(
uint8* out) {
debugAssertM(! m_committed, "Cannot commit twice");
m_committed = true;
System::memcpy(out, m_buffer, m_bufferLen);
}
void BinaryOutput::writeUInt16(uint16 u) {
reserveBytes(2);
uint8* convert = (uint8*)&u;
if (m_swapBytes) {
m_buffer[m_pos] = convert[1];
m_buffer[m_pos + 1] = convert[0];
} else {
*(uint16*)(m_buffer + m_pos) = u;
}
m_pos += 2;
}
void BinaryOutput::writeUInt32(uint32 u) {
reserveBytes(4);
uint8* convert = (uint8*)&u;
debugAssert(m_beginEndBits == 0);
if (m_swapBytes) {
m_buffer[m_pos] = convert[3];
m_buffer[m_pos + 1] = convert[2];
m_buffer[m_pos + 2] = convert[1];
m_buffer[m_pos + 3] = convert[0];
} else {
*(uint32*)(m_buffer + m_pos) = u;
}
m_pos += 4;
}
void BinaryOutput::writeUInt64(uint64 u) {
reserveBytes(8);
uint8* convert = (uint8*)&u;
if (m_swapBytes) {
m_buffer[m_pos] = convert[7];
m_buffer[m_pos + 1] = convert[6];
m_buffer[m_pos + 2] = convert[5];
m_buffer[m_pos + 3] = convert[4];
m_buffer[m_pos + 4] = convert[3];
m_buffer[m_pos + 5] = convert[2];
m_buffer[m_pos + 6] = convert[1];
m_buffer[m_pos + 7] = convert[0];
} else {
*(uint64*)(m_buffer + m_pos) = u;
}
m_pos += 8;
}
void BinaryOutput::writeString(const char* s) {
// +1 is because strlen doesn't count the null
size_t len = strlen(s) + 1;
debugAssert(m_beginEndBits == 0);
reserveBytes(len);
System::memcpy(m_buffer + m_pos, s, len);
m_pos += len;
}
void BinaryOutput::writeStringEven(const char* s) {
// +1 is because strlen doesn't count the null
size_t len = strlen(s) + 1;
reserveBytes(len);
System::memcpy(m_buffer + m_pos, s, len);
m_pos += len;
// Pad with another NULL
if ((len % 2) == 1) {
writeUInt8(0);
}
}
void BinaryOutput::writeString32(const char* s) {
// Write the NULL and count it
size_t len = strlen(s) + 1;
writeUInt32((uint32)len);
debugAssert(m_beginEndBits == 0);
reserveBytes(len);
System::memcpy(m_buffer + m_pos, s, len);
m_pos += len;
}
void BinaryOutput::writeVector4(const Vector4& v) {
writeFloat32(v.x);
writeFloat32(v.y);
writeFloat32(v.z);
writeFloat32(v.w);
}
void BinaryOutput::writeVector3(const Vector3& v) {
writeFloat32(v.x);
writeFloat32(v.y);
writeFloat32(v.z);
}
void BinaryOutput::writeVector2(const Vector2& v) {
writeFloat32(v.x);
writeFloat32(v.y);
}
void BinaryOutput::writeColor4(const Color4& v) {
writeFloat32(v.r);
writeFloat32(v.g);
writeFloat32(v.b);
writeFloat32(v.a);
}
void BinaryOutput::writeColor3(const Color3& v) {
writeFloat32(v.r);
writeFloat32(v.g);
writeFloat32(v.b);
}
void BinaryOutput::beginBits() {
debugAssertM(m_beginEndBits == 0, "Already in beginBits...endBits");
m_bitString = 0x00;
m_bitPos = 0;
m_beginEndBits = 1;
}
void BinaryOutput::writeBits(uint32 value, int numBits) {
while (numBits > 0) {
// Extract the current bit of value and
// insert it into the current byte
m_bitString |= (value & 1) << m_bitPos;
++m_bitPos;
value = value >> 1;
--numBits;
if (m_bitPos > 7) {
// We've reached the end of this byte
writeUInt8(m_bitString);
m_bitString = 0x00;
m_bitPos = 0;
}
}
}
void BinaryOutput::endBits() {
debugAssertM(m_beginEndBits == 1, "Not in beginBits...endBits");
if (m_bitPos > 0) {
writeUInt8(m_bitString);
}
m_bitString = 0;
m_bitPos = 0;
m_beginEndBits = 0;
}
}