/** \file G3D/Spline.h \author Morgan McGuire, http://graphics.cs.williams.edu */ #ifndef G3D_Spline_h #define G3D_Spline_h #include "G3D/platform.h" #include "G3D/Array.h" #include "G3D/g3dmath.h" #include "G3D/Matrix4.h" #include "G3D/Vector4.h" #include "G3D/Any.h" #include "G3D/SplineExtrapolationMode.h" namespace G3D { /** Common implementation code for all G3D::Spline template parameters */ class SplineBase { public: /** Times at which control points occur. Must have the same number of elements as Spline::control. */ Array time; /** If CYCLIC, then the control points will be assumed to wrap around. If LINEAR, then the tangents at the ends of the spline point to the final control points. If CONSTANT, the end control points will be treated as multiple contol points (so the value remains constant at the ends) */ SplineExtrapolationMode extrapolationMode; /** For a cyclic spline, this is the time elapsed between the last control point and the first. If less than or equal to zero this is assumed to be: (time[0] - time[1] + . time[time.size() - 1] - time[time.size() - 2]) / 2. */ float finalInterval; SplineInterpolationMode interpolationMode; SplineBase() : extrapolationMode(SplineExtrapolationMode::CYCLIC), finalInterval(-1), interpolationMode(SplineInterpolationMode::CUBIC) {} virtual ~SplineBase() {} /** See specification for Spline::finalInterval; this handles the non-positive case. Returns 0 if not cyclic. */ float getFinalInterval() const; /** Returns the amount of time covered by this spline in one period. For a cyclic spline, this contains the final interval.*/ float duration() const; /** Computes the derivative spline basis from the control point version. */ static Matrix4 computeBasis(); protected: /** Assumes that t0 <= s < tn. called by computeIndex. */ void computeIndexInBounds(float s, int& i, float& u) const; public: /** Given a time @a s, finds @a i and 0 <= @a u < 1 such that @a s = time[@a i] * @a u + time[@a i + 1] * (1 - @a u). Note that @a i may be outside the bounds of the time and control arrays; use getControl to handle wraparound and extrapolation issues. This function takes expected O(1) time for control points with uniform time sampled control points or for uniformly distributed random time samples, but may take O( log time.size() ) time in the worst case. Called from evaluate(). */ void computeIndex(float s, int& i, float& u) const; }; /** Smooth parameteric curve implemented using a piecewise 3rd-order Catmull-Rom spline curve. The spline is considered infinite and may either continue linearly from the specified control points or cycle through them. Control points are spaced uniformly in time at unit intervals by default, but irregular spacing may be explicitly specified. The dimension of the spline can be set by varying the Control template parameter. For a 1D function, use Spline. For a curve in the plane, Spline. Note that any template parameter that supports operator+(Control) and operator*(float) can be used; you can make splines out of G3D::Vector4, G3D::Matrix3, or your own classes. To provide shortest-path interpolation, subclass G3D::Spline and override ensureShortestPath(). To provide normalization of interpolated points (e.g., projecting Quats onto the unit hypersphere) override correct(). See Real Time Rendering, 2nd edition, ch 12 for a general discussion of splines and their properties. \sa G3D::UprightSpline */ template class Spline : public SplineBase { protected: /** The additive identity control point. */ Control zero; public: /** Control points. Must have the same number of elements as Spline::time.*/ Array control; Spline() { static Control x; // Hide the fact from C++ that we are using an // uninitialized variable here by pointer arithmetic. // This is ok because any type that is a legal control // point also supports multiplication by float. zero = *(&x) * 0.0f; } /** Appends a control point at a specific time that must be greater than that of the previous point. */ void append(float t, const Control& c) { debugAssertM((time.size() == 0) || (t > time.last()), "Control points must have monotonically increasing times."); time.append(t); control.append(c); debugAssert(control.size() == time.size()); } /** Appends control point spaced in time based on the previous control point, or spaced at unit intervals if this is the first control point. */ void append(const Control& c) { switch (time.size()) { case 0: append(0, c); break; case 1: append(time[0] + 1, c); break; default: append(2 * time[time.size() - 1] - time[time.size() - 2], c); } debugAssert(control.size() == time.size()); } /** Erases all control points and times, but retains the state of cyclic and finalInterval. */ void clear() { control.clear(); time.clear(); } /** Number of control points */ int size() const { debugAssert(time.size() == control.size()); return control.size(); } /** Returns the requested control point and time sample based on array index. If the array index is out of bounds, wraps (for a cyclic spline) or linearly extrapolates (for a non-cyclic spline), assuming time intervals follow the first or last sample recorded. Calls correct() on the control point if it was extrapolated. Returns 0 if there are no control points. @sa Spline::control and Spline::time for the underlying control point array; Spline::computeIndex to find the index given a time. */ void getControl(int i, float& t, Control& c) const { int N = control.size(); if (N == 0) { c = zero; t = 0; } else if (extrapolationMode == SplineExtrapolationMode::CYCLIC) { c = control[iWrap(i, N)]; if (i < 0) { // Wrapped around bottom // Number of times we wrapped around the cyclic array int wraps = (N + 1 - i) / N; int j = (i + wraps * N) % N; t = time[j] - wraps * duration(); } else if (i < N) { t = time[i]; } else { // Wrapped around top // Number of times we wrapped around the cyclic array int wraps = i / N; int j = i % N; t = time[j] + wraps * duration(); } } else if (i < 0) { // Are there enough points to extrapolate? if (N >= 2) { // Step away from control point 0 float dt = time[1] - time[0]; if (extrapolationMode == SplineExtrapolationMode::LINEAR) { // Extrapolate (note; i is negative) c = control[1] * float(i) + control[0] * float(1 - i); correct(c); } else if (extrapolationMode == SplineExtrapolationMode::CLAMP){ // Return the first, clamping c = control[0]; } else { alwaysAssertM(false, "Invalid extrapolation mode"); } t = dt * i + time[0]; } else { // Just clamp c = control[0]; // Only 1 time; assume 1s intervals t = time[0] + i; } } else if (i >= N) { if (N >= 2) { float dt = time[N - 1] - time[N - 2]; if (extrapolationMode == SplineExtrapolationMode::LINEAR) { // Extrapolate (note; i is negative) c = control[N - 1] * float(i - N + 2) + control[N - 2] * -float(i - N + 1); correct(c); } else if (extrapolationMode == SplineExtrapolationMode::CLAMP){ // Return the last, clamping c = control.last(); } else { alwaysAssertM(false, "Invalid extrapolation mode"); } // Extrapolate t = time[N - 1] + dt * (i - N + 1); } else { // Return the last, clamping c = control.last(); // Only 1 time; assume 1s intervals t = time[0] + i; } } else { // In bounds c = control[i]; t = time[i]; } } protected: /** Returns a series of N control points and times, fixing boundary issues. The indices may be assumed to be treated cyclically. */ void getControls(int i, float* T, Control* A, int N) const { for (int j = 0; j < N; ++j) { getControl(i + j, T[j], A[j]); } ensureShortestPath(A, N); } /** Mutates the array of N control points that begins at \a A. It is useful to override this method by one that wraps the values if they are angles or quaternions for which "shortest path" interpolation is significant. */ virtual void ensureShortestPath(Control* A, int N) const { (void)A; (void) N;} /** Normalize or otherwise adjust this interpolated Control. */ virtual void correct(Control& A) const { (void)A; } /** Does not invoke verifyDone() on the propertyTable because subclasses may have more properties */ virtual void init(AnyTableReader& propertyTable) { propertyTable.getIfPresent("extrapolationMode", extrapolationMode); propertyTable.getIfPresent("interpolationMode", interpolationMode); propertyTable.getIfPresent("finalInterval", finalInterval); const bool hasTime = propertyTable.getIfPresent("time", time); if (propertyTable.getIfPresent("control", control)) { if (! hasTime) { // Assign unit times time.resize(control.size()); for (int i = 0; i < time.size(); ++i) { time[i] = float(i); } } // if has time } // if has control } // init public: /** Accepts a table of properties, or any valid PhysicsFrame specification for a single control*/ explicit Spline(const Any& any) { AnyTableReader propertyTable(any); init(propertyTable); propertyTable.verifyDone(); } /** Note that invoking classes can call setName on the returned value instead of passing a name in. */ virtual Any toAny(const std::string& myName) const { Any a(Any::TABLE, myName); a["extrapolationMode"] = extrapolationMode; a["interpolationMode"] = interpolationMode; a["control"] = Any(control); a["time"] = Any(time); a["finalInterval"] = finalInterval; return a; } /** Return the position at time s. The spline is defined outside of the time samples by extrapolation or cycling. */ Control evaluate(float s) const { debugAssertM(control.size() == time.size(), "Corrupt spline: wrong number of control points."); /* @cite http://www.gamedev.net/reference/articles/article1497.asp Derivation of basis matrix follows. Given control points with positions p[i] at times t[i], 0 <= i <= 3, find the position at time t[1] <= s <= t[2]. Let u = s - t[0] Let U = [u^0 u^1 u^2 u^3] = [1 u u^2 u^3] Let dt0 = t[0] - t[-1] Let dt1 = t[1] - t[0] Let dt2 = t[2] - t[1] */ // Index of the first control point (i.e., the u = 0 point) int i = 0; // Fractional part of the time float u = 0; computeIndex(s, i, u); Control p[4]; float t[4]; getControls(i - 1, t, p, 4); const Control& p0 = p[0]; const Control& p1 = p[1]; const Control& p2 = p[2]; const Control& p3 = p[3]; // Compute the weighted sum of the neighboring control points. Control sum; if (interpolationMode == SplineInterpolationMode::LINEAR) { const float a = (s - t[1]) / (t[2] - t[1]); sum = p1 * (1.0f - a) + p2 * a; correct(sum); return sum; } float dt0 = t[1] - t[0]; float dt1 = t[2] - t[1]; float dt2 = t[3] - t[2]; static const Matrix4 basis = computeBasis(); // Powers of u Vector4 uvec((float)(u*u*u), (float)(u*u), (float)u, 1.0f); // Compute the weights on each of the control points. const Vector4& weights = uvec * basis; // The factor of 1/2 from averaging two time intervals is // already factored into the basis // tan1 = (dp0 / dt0 + dp1 / dt1) * ((dt0 + dt1) * 0.5); // The last term normalizes for unequal time intervals float x = (dt0 + dt1) * 0.5f; float n0 = x / dt0; float n1 = x / dt1; float n2 = x / dt2; const Control& dp0 = p1 + (p0*-1.0f); const Control& dp1 = p2 + (p1*-1.0f); const Control& dp2 = p3 + (p2*-1.0f); const Control& dp1n1 = dp1 * n1; const Control& tan1 = dp0 * n0 + dp1n1; const Control& tan2 = dp1n1 + dp2 * n2; sum = tan1 * weights[0] + p1 * weights[1] + p2 * weights[2] + tan2 * weights[3]; correct(sum); return sum; } }; } #endif