mxwcore-wotlk/deps/g3dlite/include/G3D/PointHashGrid.h

1046 lines
32 KiB
C++

/**
\file PointHashGrid.h
\maintainer Morgan McGuire, http://graphics.cs.williams.edu
\created 2008-07-01
\edited 2010-11-28
Copyright 2000-2012, Morgan McGuire.
All rights reserved.
*/
#ifndef G3D_PointHashGrid_h
#define G3D_PointHashGrid_h
#include "G3D/platform.h"
#include "G3D/EqualsTrait.h"
#include "G3D/HashTrait.h"
#include "G3D/Vector3.h"
#include "G3D/Vector3int32.h"
#include "G3D/Array.h"
#include "G3D/Table.h"
#include "G3D/AABox.h"
#include "G3D/Sphere.h"
#include "G3D/SmallArray.h"
namespace G3D {
/**
\brief A sparse 3D grid of point-based data.
The space cost for <I>n</I> elements is O(<I>n</I>). For data with
approximately uniform density (with respect to the radius hint),
the time cost of searching for neighbors is O(1).
You can move members of the data set by first removing them and then
adding them with a new location.
Template argument \a PosFunc must provide a static <code>getPosition</code> method
and \a EqualsFunc must provide a static <code>equals</code> method, as described below.
You can either write classes that support these yourself, provide template specializations of
G3D::PositionTrait and
G3D::EqualsTrait, or rely on the default template specializations, which already exist for
common G3D classes like G3D::Point3. For example:
\code
class PosFunc {
public:
static void getPosition(const Data& d, Vector3& pos) {
pos = d.location;
}
};
class EqualsFunc {
public:
static bool equals(const Data& p, const Data& q) {
return p == q;
}
};
PointHashGrid<Data, Data::PosFunc, Data::EqualsFunc> grid;
\endcode
If the \a Value class defines <code>operator==</code>, then the \a Equalsfunc is optional, so you can just write:
\code
PointHashGrid<Data, Data::PosFunc> grid;
\endcode
The simplest way to define these is often to make them both methods
of the parameter class itself, e.g.,
\code
class Data {
public:
Point3 location;
...
bool operator==(const Data& other) const {
return (location == other.location) && ...;
}
static void getPosition(const Data& p, Vector3& pos) {
pos = p.location;
}
};
typedef PointHashGrid<Data, Data> DataGrid;
\endcode
*/
template<class Value,
class PosFunc = PositionTrait<Value>,
class EqualsFunc = EqualsTrait<Value> >
class PointHashGrid {
private:
# define expectedCellSize (10)
# define ThisType PointHashGrid<Value, PosFunc, EqualsFunc>
/** A value annotated with precomputed position and hash code.*/
class Entry {
public:
Point3 position;
Value value;
};
/** One cell of the grid. */
typedef SmallArray<Entry, expectedCellSize> Cell;
typedef Table<Point3int32, Cell > CellTable;
/** The cube of +/-1 along each dimension. Initialized by initOffsetArray.*/
Vector3int32 m_offsetArray[3*3*3];
/** Incremented every time the data structure is mutated.
Used by the iterators to determine if the data structure
has changed since iteration began. */
int m_epoch;
/** Extent of a cell along one dimension. */
float m_cellWidth;
/** 1.0 / cell width */
float m_invCellWidth;
/** Conservative bounds; the actual data may be smaller. */
AABox m_bounds;
/** Number of elements. */
int m_size;
/** Non-empty cells indexed by grid position. Actual 3D position is
<code>position * m_cellWidth</code>*/
CellTable m_data;
MemoryManager::Ref m_memoryManager;
/** Intentionally unimplemented: prevent copy construction. */
PointHashGrid(const ThisType&);
/** Intentionally unimplemented: prevent assignment. */
PointHashGrid& operator=(const ThisType&);
/** Locate the cell and index within that cell containing v. Called by
remove() and contains(). */
bool find
(const Value& v,
Point3int32& foundCellCoord,
Cell*& foundCell,
int& index) {
Point3 pos;
PosFunc::getPosition(v, pos);
Point3int32 cellCoord;
getCellCoord(pos, cellCoord);
for (int i = 0; i < 27; ++i) {
Point3int32 c = cellCoord + m_offsetArray[i];
Cell* cell = m_data.getPointer(c);
if (cell != NULL) {
// The cell exists
for (int j = 0; j < cell->size(); ++j) {
if (EqualsFunc::equals((*cell)[j].value, v)) {
foundCell = cell;
index = j;
foundCellCoord = c;
return true;
}
}
}
}
// Not found
return false;
}
public:
/** \brief Compute the grid cell index of a real position.
This is used extensively internally by PointHashGrid.
It is useful to calling code to determine when an object
is about to move between cells.
*/
inline void getCellCoord(const Point3& pos, Point3int32& cellCoord) const {
for (int a = 0; a < 3; ++a) {
cellCoord[a] = iFloor(pos[a] * m_invCellWidth);
}
}
protected:
/** Initializes m_offsetArray. */
void initOffsetArray() {
int i = 0;
Point3int32 d;
for (d.x = -1; d.x <= +1; ++d.x) {
for (d.y = -1; d.y <= +1; ++d.y) {
for (d.z = -1; d.z <= +1; ++d.z) {
m_offsetArray[i] = d;
++i;
}
}
}
// Put (0, 0, 0) first, so that contains() is most likely to find
// the value quickly.
i = (1 * 3 + 1) * 3 + 1;
debugAssert(m_offsetArray[i] == Vector3int32(0,0,0));
Vector3int32 temp = m_offsetArray[0];
m_offsetArray[0] = m_offsetArray[i];
m_offsetArray[i] = temp;
}
public:
/**
\param radiusHint the radius that will typically be used with
beginBallIntersection and beginBoxIntersection. If two <i>Value</i>s are equal,
their positions must be within this radius as well. You can later change this
value with clearAndSetRadiusHint().
*/
PointHashGrid(float radiusHint, const MemoryManager::Ref& m = MemoryManager::create()) : m_size(0), m_memoryManager(m) {
initOffsetArray();
m_data.clearAndSetMemoryManager(m_memoryManager);
debugAssertM(radiusHint > 0, "Cell radius must be positive");
m_cellWidth = radiusHint;
m_invCellWidth = 1.0f / m_cellWidth;
}
/** \sa clearAndSetRadiusHint() */
float radiusHint() const {
return m_cellWidth;
}
void clear(float radiusHint) {
debugAssertM(radiusHint > 0, "Cell radius must be positive");
clear();
m_cellWidth = radiusHint;
m_invCellWidth = 1.0f / m_cellWidth;
}
void clearAndSetRadiusHint(float radiusHint) {
return clear(radiusHint);
}
/**
If \a radiusHint is negative, it is automatically chosen to put
about 5 values in each grid cell (which means about 27 * 5
values for each beginIntersection call).
\sa clearAndSetRadiusHint()
*/
PointHashGrid(const Array<Value>& init, float radiusHint = -1.0f, const MemoryManager::Ref& m = MemoryManager::create()) : m_size(0), m_memoryManager(m) {
initOffsetArray();
m_data.clearAndSetMemoryManager(m_memoryManager);
Point3 lo(Vector3::inf());
Point3 hi(-lo);
// Compute bounds
Array<Entry> entry(init.size());
for (int i = 0; i < entry.size(); ++i) {
const Value& value = init[i];
Point3 pos;
entry[i].value = value;
entry[i].hashCode = m_hashFunc(value);
PosFunc::getPosition(value, entry[i].position);
lo = lo.min(pos);
hi = hi.max(pos);
}
m_bounds = AABox(lo, hi);
if (radiusHint <= 0) {
// Compute a good cell width based on the bounds.
//
// N numPerCell
// ----- = ---------
// volume r^3
float numPerCell = 5;
radiusHint =
(float)pow(numPerCell * m_bounds.volume() / init.size(), 1.0 / 3.0);
if (radiusHint == 0) {
// Volume must have been zero because all points were colocated.
radiusHint = 0.1f;
}
}
insert(init);
}
/** Returns the number of elements. */
int size() const {
return m_size;
}
/** Returns a conservative bounding box around the contents. This is
conservative because it is not updated when elements are removed. */
const AABox& conservativeBoxBounds() const {
return m_bounds;
}
void debugPrintStatistics() const {
debugPrintf("Deepest bucket size = %d\n", (int)m_data.debugGetDeepestBucketSize());
debugPrintf("Average bucket size = %g\n", m_data.debugGetAverageBucketSize());
debugPrintf("Load factor = %g\n", m_data.debugGetLoad());
}
/** Insert @a v at position @a p given by <code>getPosition(v, p)</code>.
Multiple elements that are equal may be inserted; all copies will be
in the data structure. */
void insert(const Value& v) {
Point3 pos;
PosFunc::getPosition(v, pos);
Point3int32 cellCoord;
getCellCoord(pos, cellCoord);
// See if the cell already exists
Cell& cell = m_data.getCreate(cellCoord);
if (cell.size() == 0) {
// Use the same memory manager as for the whole class
cell.clearAndSetMemoryManager(m_memoryManager);
}
Entry& entry = cell.next();
entry.value = v;
entry.position = pos;
// Update the bounds
if (size() == 0) {
m_bounds = AABox(pos);
} else {
m_bounds.merge(pos);
}
++m_size;
++m_epoch;
}
/** Inserts all elements of the array. */
void insert(const Array<Value>& v) {
for (int i = 0; i < v.size(); ++i) {
insert(v[i]);
}
}
/** If there are multiple copies of an element, you must
delete them multiple times.
@param shrinkIfNecessary If <b>true</b>, deallocate underlying data
structures as they are emptied. False increases performace at
the cost of memory overhead for dynamic structures.
@return true if the element was found.
*/
bool remove(const Value& v, bool shrinkIfNecessary = true) {
Cell* cell = NULL;
int index = 0;
Vector3int32 cellCoord;
if (find(v, cellCoord, cell, index)) {
cell->fastRemove(index, shrinkIfNecessary);
--m_size;
++m_epoch;
if ((cell->size() == 0) && shrinkIfNecessary) {
// Remove the cell itself
// Drop our pointer, which is about to dangle
cell = NULL;
const bool success = m_data.remove(cellCoord);
(void)success;
debugAssertM(success, "Data structure corrupt: "
"tried to remove a cell that doesn't exist.");
}
return true;
} else {
return false;
}
}
/** Removes all elements of \a v. */
void remove(const Array<Value>& v, bool shrink = true) {
for (int i = 0; i < v.size(); ++i) {
remove(v[i], shrink);
}
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
class Iterator {
private:
friend class ThisType;
bool m_isEnd;
const ThisType* m_grid;
typename CellTable::Iterator m_tableIterator;
/** Index within m_tableIterator->value of the current value. */
int m_arrayIndex;
const int m_epoch;
/** End iterator. Note that the m_tableIterator is initialized to the end iterator
of a temporary value! This is ok because we'll never look at the value of the
m_tableIterator, since we're initializing the "end" Iterator.*/
Iterator() : m_isEnd(true), m_grid(NULL), m_tableIterator(CellTable().end()),
m_arrayIndex(0), m_epoch(0) {}
Iterator(const ThisType* grid) :
m_isEnd(grid->size() == 0),
m_grid(grid),
m_tableIterator( grid->m_data.begin() ),
m_arrayIndex(0),
m_epoch(grid->m_epoch) { }
private:
const Value& value() const {
debugAssert(! m_isEnd);
debugAssertM(m_tableIterator->value.size() > m_arrayIndex,
"No more elements");
return m_tableIterator->value[m_arrayIndex].value;
}
public:
inline bool operator!=(const Iterator& other) const {
if (other.m_isEnd && m_isEnd) {
return false;
} else {
return (m_isEnd != other.m_isEnd) ||
(m_tableIterator != other.m_tableIterator) ||
(m_arrayIndex != other.m_arrayIndex);
}
}
bool isValid() const {
return ! m_isEnd;
}
/** @deprecated Use isValid */
bool hasMore() const {
return ! m_isEnd;
}
bool operator==(const Iterator& other) const {
return !(*this != other);
}
/** Preincrement */
Iterator& operator++() {
debugAssert(! m_isEnd);
debugAssertM(m_epoch == m_grid->m_epoch,
"It is illegal to mutate the HashGrid "
"while iterating through it.");
++m_arrayIndex;
if (m_arrayIndex >= m_tableIterator->value.size()) {
// Move on to the next cell
++m_tableIterator;
m_arrayIndex = 0;
// Check to see if we're at the end
m_isEnd = (m_tableIterator == m_grid->m_data.end());
}
return *this;
}
/** Post increment (slower) */
Iterator operator++(int) {
debugAssert(! m_isEnd);
Iterator old = *this;
++(*this);
return old;
}
const Value& operator*() const { return value(); }
const Value* operator->() const { return &value(); }
operator Value*() const { return &value(); }
}; // Iterator
/** Iterate through all members. It is an error to mutate the HashGrid
while iterating through it. Each member can be accessed by "dereferencing"
the iterator:
<pre>
for (Grid::Iterator i = grid.begin(); i != grid.end(), ++i) {
const Value& = *i;
...
}
</pre>
*/
Iterator begin() const {
return Iterator(this);
}
const Iterator& end() const {
static const Iterator it;
return it;
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// Forward declaration required by older gcc versions for friend declaration in BoxIterator
class SphereIterator;
class BoxIterator {
private:
friend class ThisType;
friend class SphereIterator;
bool m_isEnd;
const ThisType* m_grid;
/** Lower bound on the boxes covered, inclusive. */
Vector3int32 m_lo;
/** Upper bound on the boxes covered, inclusive.*/
Vector3int32 m_hi;
/** If true, test values against m_box before returning them.*/
bool m_exact;
/** The underlying box in 3D space */
AABox m_box;
/** The iterator winds through the 3D grid between m_lo and (m_lo + m_extent) in
Z,Y,X-major order. This is the index keeping track of how
far it has come */
Vector3int32 m_current;
/** The current cell. */
Cell* m_cell;
/** Index within m_cell of the current value */
int m_arrayIndex;
const int m_epoch;
/** Called from advance() */
void advanceCell() {
do {
++m_current.x;
if (m_current.x > m_hi.x) {
m_current.x = m_lo.x;
++m_current.y;
if (m_current.y > m_hi.y) {
m_current.y = m_lo.y;
++m_current.z;
if (m_current.z > m_hi.z) {
m_isEnd = true;
return;
}
}
}
// Pick up the new cell
m_cell = m_grid->m_data.getPointer(m_current);
// Keep advancing if the cell does not exist
} while ((m_cell == NULL) || (m_cell->size() == 0));
}
/** Advance to the next value */
void advance() {
debugAssert(! m_isEnd);
do {
++m_arrayIndex;
bool inConstructor = (m_cell == NULL);
if (inConstructor || m_arrayIndex >= m_cell->size()) {
advanceCell();
m_arrayIndex = 0;
if (m_isEnd) {
// Ran out of values
return;
}
debugAssert(m_cell != NULL);
}
// Advance until we have a value that can be returned, either
// because we don't care about exactness or because it is
// guaranteed to be within the box.
} while (m_exact && ! m_box.contains(position()));
}
/** End iterator */
BoxIterator() : m_isEnd(true), m_grid(NULL), m_exact(true), m_current(0,0,0), m_cell(NULL), m_arrayIndex(0), m_epoch(0) {}
/** Begin iterator */
BoxIterator(const ThisType* grid, bool exact, const AABox& box) :
m_isEnd(false),
m_grid(grid),
m_exact(exact),
m_box(box),
m_current(-1, 0 ,0),
m_cell(NULL),
m_arrayIndex(0),
m_epoch(grid->m_epoch) {
m_grid->getCellCoord(box.low(), m_lo);
m_grid->getCellCoord(box.high(), m_hi);
// Get to the first value
m_current = m_lo;
// Back up one so that advancing takes us to the first
--m_current.x;
advance();
}
const Value& value() const {
debugAssert(! m_isEnd);
return (*m_cell)[m_arrayIndex].value;
}
/** Used by SphereIterator::advance() */
const Vector3& position() const {
debugAssert(! m_isEnd);
return (*m_cell)[m_arrayIndex].position;
}
// Intentionally unimplemented
BoxIterator& operator=(const BoxIterator&);
public:
inline bool operator!=(const BoxIterator& other) const {
if (other.m_isEnd && m_isEnd) {
return false;
} else {
return (m_isEnd != other.m_isEnd) ||
(m_cell != other.m_cell) ||
(m_arrayIndex != other.m_arrayIndex);
}
}
bool operator==(const BoxIterator& other) const {
return !(*this != other);
}
/** Preincrement */
BoxIterator& operator++() {
debugAssert(! m_isEnd);
debugAssertM(m_epoch == m_grid->m_epoch,
"It is illegal to mutate the HashGrid "
"while iterating through it.");
advance();
return *this;
}
/** Post increment (slower) */
BoxIterator operator++(int) {
Iterator old = *this;
++(*this);
return old;
}
const Value& operator*() const { return value(); }
const Value* operator->() const { return &value(); }
operator Value*() const { return &value(); }
/** \deprecated Use isValid */
bool hasMore() const {
return ! m_isEnd;
}
bool isValid() const {
return ! m_isEnd;
}
}; // BoxIterator
/**
Finds all values whose positions are within @a box. It is an error to
mutate the PointHashGrid while iterating through it.
@param exact If false, the iterator will execute more quickly but will likely return some
values that lie outside the box. Set exact = false if you are going to test the
results against the yourself box anyway.
*/
BoxIterator beginBoxIntersection(const AABox& box, bool exact = true) const {
return BoxIterator(this, exact, box);
}
const BoxIterator& endBoxIntersection() const {
static const BoxIterator it;
return it;
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
class SphereIterator {
private:
friend class ThisType;
bool m_isEnd;
Sphere m_sphere;
BoxIterator m_boxIterator;
SphereIterator() : m_isEnd(true) {}
void advance() {
if (! m_boxIterator.isValid()) {
m_isEnd = true;
return;
}
while (! m_sphere.contains(m_boxIterator.position())) {
++m_boxIterator;
if (! m_boxIterator.isValid()) {
m_isEnd = true;
return;
}
}
}
static AABox getBoundingBox(const Sphere& s) {
AABox box;
s.getBounds(box);
return box;
}
SphereIterator(const ThisType* grid, const Sphere& sphere) :
m_isEnd(false),
m_sphere(sphere),
m_boxIterator(grid, false, getBoundingBox(sphere)) {
// Find the first element that is actually in the sphere,
// not just the box.
advance();
}
const Value& value() const {
return *m_boxIterator;
}
// TODO: if the sphere is very big compared to radius, check each
// cell's box to see if the cell itself is actually inside the sphere
// before iterating through it, since there may be many boxes outside the sphere.
// Intentionally unimplemented
SphereIterator& operator=(const SphereIterator&);
public:
inline bool operator!=(const SphereIterator& other) const {
if (other.m_isEnd && m_isEnd) {
return false;
} else {
return
(m_isEnd != other.m_isEnd) ||
(m_sphere != other.m_sphere) ||
(m_boxIterator != other.m_boxIterator);
}
}
bool operator==(const SphereIterator& other) const {
return !(*this != other);
}
/** Preincrement */
SphereIterator& operator++() {
debugAssert(! m_isEnd);
++m_boxIterator;
advance();
return *this;
}
/** Post increment (slower) */
SphereIterator operator++(int) {
Iterator old = *this;
++(*this);
return old;
}
const Value& operator*() const { return value(); }
const Value* operator->() const { return &value(); }
operator Value*() const { return &value(); }
/** \deprecated use isValid */
bool G3D_DEPRECATED hasMore() const {
return ! m_isEnd;
}
bool isValid() const {
return ! m_isEnd;
}
}; // SphereIterator
/** Finds all values whose positions are within \a sphere. It is
an error to mutate the PointHashGrid while iterating through
it. */
SphereIterator begin(const Sphere& sphere) const {
return SphereIterator(this, sphere);
}
/** \deprecated \sa beginIntersection */
SphereIterator G3D_DEPRECATED beginSphereIntersection(const Sphere& sphere) const {
return SphereIterator(this, sphere);
}
/** \deprecated \sa SphereIterator::hasMore */
const SphereIterator& endSphereIntersection() const {
static const SphereIterator it;
return it;
}
/** Appends results */
void getIntersectingMembers(const Sphere& sphere, Array<Value>& result) const {
for (SphereIterator it = beginSphereIntersection(sphere); it.isValid(); ++it) {
result.append(*it);
}
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
/**
Dereference to access the bounds() and size() [element count] of the underlying
cell object.
Example:
<pre>
for(PointHashGrid<Vector3>::CellIterator iter = grid.beginCells(); iter != grid.endCells(); ++iter) {
entriesFound += iter->size();
}
</pre>
*/
class CellIterator {
private:
friend class ThisType;
bool m_isEnd;
const ThisType* m_grid;
typename CellTable::Iterator m_tableIterator;
const int m_epoch;
Cell& cell() {
return m_tableIterator->value;
}
public:
class CellObject {
friend class CellIterator;
private:
const CellIterator* m_parent;
CellObject() : m_parent(NULL) {}
public:
/** Returns the bounds on this cell */
AABox bounds() const {
const Vector3int32& k = m_parent->m_tableIterator->key;
return AABox(Vector3(k) * m_parent->m_grid->m_cellWidth,
Vector3(k + Vector3int32(1, 1, 1)) * m_parent->m_grid->m_cellWidth);
}
/** Number of elements inside this cell */
int size() const {
debugAssert(! m_parent->m_isEnd);
return m_parent->m_tableIterator->value.size();
}
};
private:
/** Used to make the indirection work.*/
CellObject m_indirection;
/** End iterator. Note that the m_tableIterator is initialized to the end iterator
of a temporary value! This is ok because we'll never look at the value of the
m_tableIterator, since we're initializing the "end" Iterator.*/
CellIterator() :
m_isEnd(true),
m_grid(NULL),
m_tableIterator( CellTable().end() ),
m_epoch(0) {}
CellIterator(const ThisType* grid) :
m_isEnd(false),
m_grid(grid),
m_tableIterator( grid->m_data.begin()),
m_epoch(grid->m_epoch) {
m_indirection.m_parent = this;
m_isEnd = ! m_tableIterator.isValid();
}
// Intentionally unimplemented
CellIterator& operator=(const CellIterator&);
public:
const CellObject& operator*() const { return m_indirection; }
const CellObject* operator->() const { return &m_indirection; }
operator CellObject*() const { return &m_indirection; }
inline bool operator!=(const CellIterator& other) const {
// != is called more often than == during iteration
return !(
(m_isEnd && other.m_isEnd) ||
((m_isEnd == other.m_isEnd) &&
(m_tableIterator != other.m_tableIterator)));
}
bool operator==(const CellIterator& other) const {
return !(*this != other);
}
/** Preincrement */
CellIterator& operator++() {
debugAssertM(m_epoch == m_grid->m_epoch,
"It is illegal to mutate the HashGrid while "
"iterating through it.");
++m_tableIterator;
m_isEnd = ! m_tableIterator.isValid();
return *this;
}
/** Post increment (slower) */
CellIterator operator++(int) {
Iterator old = *this;
++(*this);
return old;
}
/** \deprecated Use isValid */
bool hasMore() const {
return ! m_isEnd;
}
bool isValid() const {
return ! m_isEnd;
}
}; // CellIterator
/** Iterates through the non-empty cells. This is intended primarily for
debugging and visualizing the data structure.*/
CellIterator beginCells() const {
return CellIterator(this);
}
const CellIterator& endCells() const {
static const CellIterator it;
return it;
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
/** Returns true if there is a value that is exactly equal to @a v. This will
check all neighboring cells to avoid roundoff error at cell boundaries.
*/
bool contains(const Value& v) const {
Cell* cell = NULL;
int index = 0;
Vector3int32 cellCoord;
return const_cast<ThisType*>(this)->find(v, cellCoord, cell, index);
}
/** Calls delete on all of the values, which are assumed to be pointers.
This is a helper to avoid requiring you to iterate through the data
structure, removing and deleting each one. Clears the PointHashGrid at the
end.
Using objects (instead of pointers) or reference counted pointers is
recommended over using pointers and this deleteAll method.*/
void deleteAll() {
for (Iterator it = begin(); it.isValid(); ++it) {
delete *it;
}
clear();
}
void clearAndSetMemoryManager(const MemoryManager::Ref& m) {
++m_epoch;
m_size = 0;
m_bounds = AABox();
m_data.clearAndSetMemoryManager(m);
m_memoryManager = m;
}
/** Removes all data.
@param shrink If true, underlying structures are deallocated as
they are freed.*/
void clear(bool shrink = true) {
m_size = 0;
m_bounds = AABox();
if (! shrink) {
// Remove all data
for (CellIterator it = beginCells(); it.isValid(); ++it) {
it.cell().clear(true);
}
} else {
m_data.clear();
}
++m_epoch;
}
int debugGetDeepestBucketSize() const {
return (int)m_data.debugGetDeepestBucketSize();
}
float debugGetAverageBucketSize() const {
return m_data.debugGetAverageBucketSize();
}
#undef ThisType
};
} // G3D
#endif